Difference between revisions of "AoPS Wiki:Sandbox"

(Sandbox Area)
Line 1: Line 1:
 
{{AoPSWiki:Sandbox/header}} <!-- Please do not delete this line -->
 
{{AoPSWiki:Sandbox/header}} <!-- Please do not delete this line -->
In the computer world, a '''sandbox''' is a place to test and experiment -- essentially, it's a place to play.
+
=== AIME 2000 II ===
  
This is the AoPSWiki Sandbox. Feel free to experiment here.
+
== Problem 13 ==
 +
The equation <math>2000x^6+100x^5+10x^3+x-2=0</math> has exactly two real roots, one of which is <math>\frac{m+\sqrt{n}}r</math>, where <math>m</math>, <math>n</math> and <math>r</math> are integers, <math>m</math> and <math>r</math> are relatively prime, and <math>r>0</math>. Find <math>m+n+r</math>.
  
Warning: anything you place here is subject to deletion without notice.
+
== Problem 14 ==
 +
Every positive integer <math>k</math> has a unique factorial base expansion <math>(f_1,f_2,f_3,\ldots,f_m)</math>, meaning that <math>k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m</math>, where each <math>f_i</math> is an integer, <math>0\le f_i\le i</math>, and <math>0<f_m</math>. Given that <math>(f_1,f_2,f_3,\ldots,f_j)</math> is the factorial base expansion of <math>16!-32!+48!-64!+\cdots+1968!-1984!+2000!</math>, find the value of <math>f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j</math>.
  
=== Sandbox Area ===
+
== Problem 15 ==
<asy>
+
Find the least positive integer <math>n</math> such that <center><math>\frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}.</math></center>
draw((0,0)--(3,9),black);
 
label("$71^\circ$",(0,0),NE);
 
draw((3,9)--(6,0),black);
 
label("$71^\circ$",(6,0),NW);
 
draw((0,0)--(6,0),black);
 
label("$38^\circ$",(3,8),S);
 
dot((0,0));
 
dot((3,9));
 
dot((6,0));
 
draw((-1,7)--(2.3,5.9),black);
 
draw((-1,6)--(2,6),red);
 
label("$19^\circ$",(1,6),NW);
 
</asy>
 
  
<math>\lim_{x\to0}\frac{a}{x}</math>
+
=== AIME 2001 II ===
  
The characteristic polynomial <math>f(\lambda)</math> of the
+
== Problem 13 ==
<math>3 \times 3</math> matrix
+
In quadrilateral <math>ABCD</math>, <math>\angle{BAD}\cong\angle{ADC}</math> and <math>\angle{ABD}\cong\angle{BCD}</math>, <math>AB = 8</math>, <math>BD = 10</math>, and <math>BC = 6</math>. The length <math>CD</math> may be written in the form <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
<math>  
+
 
\left(
+
== Problem 14 ==
\begin{array}{ccc}
+
There are <math>2n</math> complex numbers that satisfy both <math>z^{28} - z^{8} - 1 = 0</math> and <math>\mid z \mid = 1</math>. These numbers have the form <math>z_{m} = \cos\theta_{m} + i\sin\theta_{m}</math>, where <math>0\leq\theta_{1} < \theta_{2} < \ldots < \theta_{2n} < 360</math> and angles are measured in degrees. Find the value of <math>\theta_{2} + \theta_{4} + \ldots + \theta_{2n}</math>.
a & b & c \\
+
 
d & e & f \\
+
== Problem 15 ==
g & h & i \end{array}  
+
Let <math>EFGH</math>, <math>EFDC</math>, and <math>EHBC</math> be three adjacent square faces of a cube, for which <math>EC = 8</math>, and let <math>A</math> be the eighth vertex of the cube. Let <math>I</math>, <math>J</math>, and <math>K</math>, be the points on <math>\overline{EF}</math>, <math>\overline{EH}</math>, and <math>\overline{EC}</math>, respectively, so that <math>EI = EJ = EK = 2</math>. A solid <math>S</math> is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to <math>\overline{AE}</math>, and containing the edges, <math>\overline{IJ}</math>, <math>\overline{JK}</math>, and <math>\overline{KI}</math>. The surface area of <math>S</math>, including the walls of the tunnel, is <math>m + n\sqrt {p}</math>, where <math>m</math>, <math>n</math>, and <math>p</math> are positive integers and <math>p</math> is not divisible by the square of any prime. Find <math>m + n + p</math>.
\right)</math>  
+
 
is given by the equation
+
=== AIME 2002 II ===
<math> f(\lambda)
+
 
= \left|
+
== Problem 13 ==
\begin{array}{ccc}
+
In triangle <math>ABC</math>, point <math>D</math> is on <math>\overline{BC}</math> with <math>CD=2</math> and <math>DB=5</math>, point <math>E</math> is on <math>\overline{AC}</math> with <math>CE=1</math> and <math>EA=32</math>, <math>AB=8</math>, and <math>\overline{AD}</math> and <math>\overline{BE}</math> intersect at <math>P</math>. Points <math>Q</math> and <math>R</math> lie on <math>\overline{AB}</math> so that <math>\overline{PQ}</math> is parallel to <math>\overline{CA}</math> and <math>\overline{PR}</math> is parallel to <math>\overline{CB}</math>. It is given that the ratio of the area of triangle <math>PQR</math> to the area of triangle <math>ABC</math> is <math>m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
\lambda - a & -b & -c \\
+
 
-d & \lambda - e & -f \\
+
== Problem 14 ==
-g & -h & \lambda - i \end{array}  
+
The perimeter of triangle <math>APM</math> is <math>152</math>, and the angle <math>PAM</math> is a right angle. A circle of radius <math>19</math> with center <math>O</math> on <math>\overline{AP}</math> is drawn so that it is tangent to <math>\overline{AM}</math> and <math>\overline{PM}</math>. Given that <math>OP=m/n</math> where <math>m</math> and <math>n</math> are relatively prime positive integers, find <math>m+n</math>.
\right|.</math>
+
 
 +
== Problem 15 ==
 +
Circles <math>\mathcal{C}_{1}</math> and <math>\mathcal{C}_{2}</math> intersect at two points, one of which is <math>(9,6)</math>, and the product of the radii is <math>68</math>. The x-axis and the line <math>y = mx</math>, where <math>m > 0</math>, are tangent to both circles. It is given that <math>m</math> can be written in the form <math>a\sqrt {b}/c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers, <math>b</math> is not divisible by the square of any prime, and <math>a</math> and <math>c</math> are relatively prime. Find <math>a + b + c</math>.

Revision as of 08:26, 12 April 2010

Welcome to the sandbox, a location to test your newfound wiki-editing abilities.

Please note that all contributions here may be deleted periodically and without warning.

AIME 2000 II

Problem 13

The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r$, where $m$, $n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0$. Find $m+n+r$.

Problem 14

Every positive integer $k$ has a unique factorial base expansion $(f_1,f_2,f_3,\ldots,f_m)$, meaning that $k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m$, where each $f_i$ is an integer, $0\le f_i\le i$, and $0<f_m$. Given that $(f_1,f_2,f_3,\ldots,f_j)$ is the factorial base expansion of $16!-32!+48!-64!+\cdots+1968!-1984!+2000!$, find the value of $f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j$.

Problem 15

Find the least positive integer $n$ such that

$\frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}.$

AIME 2001 II

Problem 13

In quadrilateral $ABCD$, $\angle{BAD}\cong\angle{ADC}$ and $\angle{ABD}\cong\angle{BCD}$, $AB = 8$, $BD = 10$, and $BC = 6$. The length $CD$ may be written in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Problem 14

There are $2n$ complex numbers that satisfy both $z^{28} - z^{8} - 1 = 0$ and $\mid z \mid = 1$. These numbers have the form $z_{m} = \cos\theta_{m} + i\sin\theta_{m}$, where $0\leq\theta_{1} < \theta_{2} < \ldots < \theta_{2n} < 360$ and angles are measured in degrees. Find the value of $\theta_{2} + \theta_{4} + \ldots + \theta_{2n}$.

Problem 15

Let $EFGH$, $EFDC$, and $EHBC$ be three adjacent square faces of a cube, for which $EC = 8$, and let $A$ be the eighth vertex of the cube. Let $I$, $J$, and $K$, be the points on $\overline{EF}$, $\overline{EH}$, and $\overline{EC}$, respectively, so that $EI = EJ = EK = 2$. A solid $S$ is obtained by drilling a tunnel through the cube. The sides of the tunnel are planes parallel to $\overline{AE}$, and containing the edges, $\overline{IJ}$, $\overline{JK}$, and $\overline{KI}$. The surface area of $S$, including the walls of the tunnel, is $m + n\sqrt {p}$, where $m$, $n$, and $p$ are positive integers and $p$ is not divisible by the square of any prime. Find $m + n + p$.

AIME 2002 II

Problem 13

In triangle $ABC$, point $D$ is on $\overline{BC}$ with $CD=2$ and $DB=5$, point $E$ is on $\overline{AC}$ with $CE=1$ and $EA=32$, $AB=8$, and $\overline{AD}$ and $\overline{BE}$ intersect at $P$. Points $Q$ and $R$ lie on $\overline{AB}$ so that $\overline{PQ}$ is parallel to $\overline{CA}$ and $\overline{PR}$ is parallel to $\overline{CB}$. It is given that the ratio of the area of triangle $PQR$ to the area of triangle $ABC$ is $m/n$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 14

The perimeter of triangle $APM$ is $152$, and the angle $PAM$ is a right angle. A circle of radius $19$ with center $O$ on $\overline{AP}$ is drawn so that it is tangent to $\overline{AM}$ and $\overline{PM}$. Given that $OP=m/n$ where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Problem 15

Circles $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ intersect at two points, one of which is $(9,6)$, and the product of the radii is $68$. The x-axis and the line $y = mx$, where $m > 0$, are tangent to both circles. It is given that $m$ can be written in the form $a\sqrt {b}/c$, where $a$, $b$, and $c$ are positive integers, $b$ is not divisible by the square of any prime, and $a$ and $c$ are relatively prime. Find $a + b + c$.