Difference between revisions of "Proofs without words"
(→Miscellaneous: enough for now) |
(+ couple more) |
||
Line 1: | Line 1: | ||
The following demonstrate [[proof]]s of various identities and theorems using pictures, inspired from [http://usamts.org/Gallery/G_Gallery.php this gallery]. | The following demonstrate [[proof]]s of various identities and theorems using pictures, inspired from [http://usamts.org/Gallery/G_Gallery.php this gallery]. | ||
+ | <!-- | ||
+ | (1+2+ .. n)^2 = 1^3 + .. + n^3 | ||
+ | TWO WAYS: show that n^3 = odd number sum | ||
+ | : USAMTS method | ||
+ | |||
+ | pentagonal = 3 * triangular + n | ||
+ | |||
+ | fibonacci f_1^2 + .. f_n^2 = f_{n+1}f_{n} | ||
+ | |||
+ | hockey stick? | ||
+ | |||
+ | |||
+ | 1/2 + 1/4 + ... = 1 | ||
+ | |||
+ | 1 + r + r^2 + ... = 1/(1-r) | ||
+ | |||
+ | |||
+ | geometry: | ||
+ | Pythagorean Theorem (multiple ways - 5?) | ||
+ | |||
+ | shortest line | ||
+ | |||
+ | smallest triangle in angle | ||
+ | |||
+ | equilateral triangle in three lines | ||
+ | |||
+ | Fermat point problem | ||
+ | |||
+ | Fagnano problem | ||
+ | |||
+ | parallelogram = cross-product | ||
+ | |||
+ | trapezoid ABCD with AC perp BD <==> (AB + CD)^2 = AC^2 + BD^2 | ||
+ | |||
+ | regular heptagon identity? | ||
+ | |||
+ | dodecagon = 3R^2 | ||
+ | |||
+ | A = rs | ||
+ | |||
+ | Law of Cosines | ||
+ | |||
+ | Law of Sines | ||
+ | |||
+ | radical axes/homotheties? | ||
+ | |||
+ | |||
+ | misc. | ||
+ | 3D QM-GM | ||
+ | |||
+ | Jensen's inequality (draw curve, multiple points) | ||
+ | |||
+ | Minkowski's inequality | ||
+ | |||
+ | rt(a^2 - ab + b^2) rt(b^2 - bc + c^2) < rt(a^2 + ac + c^2) | ||
+ | |||
+ | integration by parts | ||
+ | |||
+ | Homeomorphism between S^1 - (1,0) to R | ||
+ | cardinality of interval with R | ||
+ | |||
+ | --> | ||
== Summations == | == Summations == | ||
<center><asy>unitsize(15); defaultpen(linewidth(0.7)); | <center><asy>unitsize(15); defaultpen(linewidth(0.7)); | ||
Line 69: | Line 131: | ||
The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | The sum of the first <math>n</math> positive integers is <math>n(n+1)/2</math>.<br><br> | ||
+ | </center> | ||
+ | |||
+ | <center><asy>unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | int n = 6; real r = 0.35, h = 3/4; /* radius size and horizontal spacing */ | ||
+ | pair shiftR = (h*(n+1)+r, 0); | ||
+ | |||
+ | pen colors(int i){ /* shading */ | ||
+ | if(i == n) return red; | ||
+ | return rgb(5/n,0.4+5/(2n),1-5/n); | ||
+ | } | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ | ||
+ | draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); | ||
+ | } | ||
+ | void makeshiftarrow(pair A, real dir, real arrowlength = r){ /* Arrow option resizes */ | ||
+ | fill(A--A+arrowlength*expi(dir+pi/6)--A+arrowlength*expi(dir-pi/6)--cycle); | ||
+ | } | ||
+ | pair getCenter(int i, int j){ return ((2*j-i)*h,-i);} | ||
+ | |||
+ | /* triangle */ | ||
+ | for(int i = 0; i < n+1; ++i){ | ||
+ | draw((-i*h,-i)--(i*h,-i)); /* horizontal lining */ | ||
+ | for(int j = 0; j <= i; ++j) | ||
+ | filldraw(circle(getCenter(i,j),r), colors(i)); | ||
+ | } | ||
+ | |||
+ | /* fill in circle in row 4, column 3 */ | ||
+ | filldraw(circle(getCenter(3,2),r),blue); | ||
+ | draw(getCenter(n,2)-- getCenter(3,2)-- getCenter(n,n+2-3)); | ||
+ | makeshiftarrow(getCenter(n,2),pi/4,0.5); makeshiftarrow(getCenter(n,n+2-3),3*pi/4,0.5); | ||
+ | |||
+ | htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),E,fontsize(10)); | ||
+ | </asy><br> | ||
+ | |||
+ | The sum of the first <math>n</math> positive integers is <math>{n+1 \choose 2}</math>.{{ref|1}}<br><br> | ||
</center> | </center> | ||
== Geometric series == | == Geometric series == | ||
− | + | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); | |
+ | int n = 10; /* # of iterations */ | ||
+ | real s = 6; /* square size */ | ||
+ | pair shiftR = (s+2,0); pen sm = fontsize(10); | ||
+ | void fillrect(pair A, pair B = (0,0), pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } | ||
+ | void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | for(int i = 0; i < 2; ++i) /* left */ | ||
+ | fillrect((s/2^(ceil(i/2)),s/2^(floor(i/2)))); | ||
+ | for(int i = 0; i < n; ++i) /* right */ | ||
+ | fillrect(shiftR,shiftR + (s/2^(ceil(i/2)),s/2^(floor(i/2)))); | ||
+ | label("$\frac 12$",(s*3/4,s/2),sm); label("$\cdots$",(s*1/4,s/2),sm); | ||
+ | label("$\frac 12$",shiftR+(s*3/4,s/2),sm); label("$\cdots$",shiftR+(s*1/4,s/2),sm); | ||
+ | label("$\frac 14$",shiftR+(s*1/4,s*3/4),sm); label("$\frac 18$",shiftR+(s*3/8,s/4),sm); | ||
+ | htick((0,-1), (s,-1)); htick(shiftR + (0,-1), shiftR + (s,-1)); | ||
+ | label("$1$",(s/2,-1),S,sm); label("$1$",shiftR+(s/2,-1),S,sm); | ||
+ | </asy> | ||
The infinite [[geometric series]] <math>\frac 12 + \frac {1}{2^2} + \frac {1}{2^3} + \cdots = 1</math>.<br><br> | The infinite [[geometric series]] <math>\frac 12 + \frac {1}{2^2} + \frac {1}{2^3} + \cdots = 1</math>.<br><br> | ||
− | </center | + | </center> |
<center><asy> defaultpen(linewidth(0.7)); unitsize(15); | <center><asy> defaultpen(linewidth(0.7)); unitsize(15); | ||
Line 100: | Line 212: | ||
<center><asy> defaultpen(linewidth(0.7)); unitsize(15); | <center><asy> defaultpen(linewidth(0.7)); unitsize(15); | ||
int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; | int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; | ||
+ | pair shiftR = (h+3,0); | ||
void drawEquilaterals(pair A, real s){ | void drawEquilaterals(pair A, real s){ | ||
Line 108: | Line 221: | ||
for(int i = 0; i < n; ++i) | for(int i = 0; i < n; ++i) | ||
− | drawEquilaterals( (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); | + | drawEquilaterals(shiftR + (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); |
+ | drawEquilaterals((0,0), h/3^.5); draw((-h/3^.5,0)--(h/3^.5,0)--(0,h)--cycle); label("$\vdots$",(0,3/4*h)); | ||
</asy><br> | </asy><br> | ||
Line 187: | Line 301: | ||
label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | ||
</asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | </asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | ||
− | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].<br><br> | + | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref|2}}<br><br> |
</center> | </center> | ||
Line 223: | Line 337: | ||
</center> | </center> | ||
+ | == References == | ||
+ | #{{note|1}} MathOverflow | ||
+ | #{{note|2}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | ||
[[Category:Proofs]] | [[Category:Proofs]] |
Revision as of 22:16, 20 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
![[asy]unitsize(15); defaultpen(linewidth(0.7)); int n = 6; pair shiftR = ((n+2),0); real r = 0.3; pen colors(int i){ return rgb(i/n,0.4+i/(2n),1-i/n); } /* shading */ void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* triangle */ draw((-r,0)--(-r,-n+1)^^(r,-n+1)--(r,0),linetype("4 4")); for(int i = 0; i < n; ++i) draw((-i,-i)--(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j < 2*i+1; ++j) filldraw(CR((j-i,-i),r),colors(i)); /* square */ draw(r*expi(pi/4)+shiftR--(n-1,-n+1)+r*expi(pi/4)+shiftR^^r*expi(5*pi/4)+shiftR--r*expi(5*pi/4)+(n-1,-n+1)+shiftR,linetype("4 4")); for(int i = 0; i < n; ++i) draw(shiftR+(0,-i)--shiftR+(i,-i)--shiftR+(i,0)); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) filldraw(CR((j,-i)+shiftR,r),colors((i>j)?i:j)); htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/0/b/3/0b301e04f1089bf5f5f5332b9cbb151baa5c90d7.png)
The sum of the first odd natural numbers is
.
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 6; pair shiftR = ((n+2),0); real r = 0.3; pen colors(int i){ return rgb(0.4+i/(2n),i/n,1-i/n); } /* shading */ void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* triangle */ draw((0.5,0)--(n-0.5,-n+1),linetype("4 4")); for(int i = 0; i < n; ++i) draw((0,-i)--(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j <= i; ++j) filldraw(CR((j,-i),r),colors(i)); /* arc arrow */ draw( arc((n,-n+1)/2, (1.5,-1.5), (n-1.5,-1.5), CW) ); fill((n-1.5,-1.5) -- (n-1.5,-1.5)+r*expi(5.2*pi/6) -- (n-1.5,-1.5)+r*expi(3.3*pi/6) -- cycle); /* manual arrowhead? avoid resizing */ /* square */ draw(shiftR+(0.5,0)--shiftR+(n-0.5,-n+1),linetype("4 4")); for(int i = 0; i < n; ++i) draw(shiftR+(0,-i)--shiftR+(i,-i)^^shiftR+(n,-n+1)-(0,-i)--shiftR+(n,-n+1)-(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j < n+1; ++j) filldraw(CR((j,-i)+shiftR,r),colors((j <= i) ? i : n-1-i)); /* labeling and ticks */ htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); htick(shiftR+(-r,-n),shiftR+(n+r-1,-n),(0,0.15)); label("$n$",shiftR+((n-1)/2,-n),S,fontsize(10)); htick(shiftR+(n-r,-n),shiftR+(n+r,-n),(0,0.15)); label("$1$",shiftR+(n,-n),S,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/4/2/3/4234a9f1ce8beb18aab9f27831bf936117909db1.png)
The sum of the first positive integers is
.
![[asy]unitsize(15); defaultpen(linewidth(0.7)); int n = 6; real r = 0.35, h = 3/4; /* radius size and horizontal spacing */ pair shiftR = (h*(n+1)+r, 0); pen colors(int i){ /* shading */ if(i == n) return red; return rgb(5/n,0.4+5/(2n),1-5/n); } void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } void makeshiftarrow(pair A, real dir, real arrowlength = r){ /* Arrow option resizes */ fill(A--A+arrowlength*expi(dir+pi/6)--A+arrowlength*expi(dir-pi/6)--cycle); } pair getCenter(int i, int j){ return ((2*j-i)*h,-i);} /* triangle */ for(int i = 0; i < n+1; ++i){ draw((-i*h,-i)--(i*h,-i)); /* horizontal lining */ for(int j = 0; j <= i; ++j) filldraw(circle(getCenter(i,j),r), colors(i)); } /* fill in circle in row 4, column 3 */ filldraw(circle(getCenter(3,2),r),blue); draw(getCenter(n,2)-- getCenter(3,2)-- getCenter(n,n+2-3)); makeshiftarrow(getCenter(n,2),pi/4,0.5); makeshiftarrow(getCenter(n,n+2-3),3*pi/4,0.5); htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),E,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/a/d/0/ad07afd61203684cc5b5a9bbbd0bac0900737518.png)
The sum of the first positive integers is
.[1]
Geometric series
![[asy]defaultpen(linewidth(0.7)); unitsize(15); int n = 10; /* # of iterations */ real s = 6; /* square size */ pair shiftR = (s+2,0); pen sm = fontsize(10); void fillrect(pair A, pair B = (0,0), pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } void htick(pair A, pair B, pair ticklength = (0,0.15)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } for(int i = 0; i < 2; ++i) /* left */ fillrect((s/2^(ceil(i/2)),s/2^(floor(i/2)))); for(int i = 0; i < n; ++i) /* right */ fillrect(shiftR,shiftR + (s/2^(ceil(i/2)),s/2^(floor(i/2)))); label("$\frac 12$",(s*3/4,s/2),sm); label("$\cdots$",(s*1/4,s/2),sm); label("$\frac 12$",shiftR+(s*3/4,s/2),sm); label("$\cdots$",shiftR+(s*1/4,s/2),sm); label("$\frac 14$",shiftR+(s*1/4,s*3/4),sm); label("$\frac 18$",shiftR+(s*3/8,s/4),sm); htick((0,-1), (s,-1)); htick(shiftR + (0,-1), shiftR + (s,-1)); label("$1$",(s/2,-1),S,sm); label("$1$",shiftR+(s/2,-1),S,sm); [/asy]](http://latex.artofproblemsolving.com/5/6/3/563512fa66c538144a78d03360797d66f4af42d9.png)
The infinite geometric series .
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 4; real h = 2; pen colors[] = {rgb(0.8,0,0),rgb(0,0.8,0)}; void drawTriGrid(real s){ for(int i = 0; i < 4; ++i){ draw( (-s*3/2,s*(3/2 - i)) -- (s*3/2,s*(3/2 - i)), linetype("2 2")); draw( (s*(3/2 - i),-s*3/2) -- (s*(3/2 - i),s*3/2), linetype("2 2")); } } void fillrect(pair A, pair B, pen p){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, linewidth(1)); } for(int i = 0; i < n; ++i) { fillrect( ((-1)^i*-h/3^i*(3/2),-h/3^i*(3/2)) , ((-1)^i*-h/3^i*(1/2),h/3^i*(3/2)) , colors[0]); fillrect(-((-1)^i*-h/3^i*(3/2),-h/3^i*(3/2)) ,-((-1)^i*-h/3^i*(1/2),h/3^i*(3/2)) , colors[1]); fillrect( (-h/3^i*(1/2),(-1)^i*h/3^i*(1/2)) , (h/3^i*(1/2),(-1)^i*h/3^i*(3/2)), colors[0]); fillrect(-(-h/3^i*(1/2),(-1)^i*h/3^i*(1/2)) ,-(h/3^i*(1/2),(-1)^i*h/3^i*(3/2)), colors[1]); drawTriGrid(h/3^i); } [/asy]](http://latex.artofproblemsolving.com/c/6/5/c655fc6d2f47f8769aef0bbf6b14eb09d86bffc8.png)
The infinite geometric series .
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; pair shiftR = (h+3,0); void drawEquilaterals(pair A, real s){ filldraw(A--A+s*expi(2*pi/3)--A+(-s,0)--cycle,colors[0]); filldraw(A--A+s*expi(2*pi/3)--A+s*expi(1*pi/3)--cycle,colors[1]); filldraw(A--A+s*expi(1*pi/3)--A+(s,0)--cycle,colors[2]); } for(int i = 0; i < n; ++i) drawEquilaterals(shiftR + (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); drawEquilaterals((0,0), h/3^.5); draw((-h/3^.5,0)--(h/3^.5,0)--(0,h)--cycle); label("$\vdots$",(0,3/4*h)); [/asy]](http://latex.artofproblemsolving.com/a/a/4/aa4c7024e5207f42218dcdc03f597170aefeea33.png)
The infinite geometric series .
![[asy] defaultpen(linewidth(1)); unitsize(15); int n = 8; /* number of layers */ real h = 3; /* square height */ pen colors[] = {rgb(0.8,0,0),rgb(0,0.8,0),rgb(0,0,0.8)}; pair shiftL = (-3*h,0); /* amount to shift second square left by */ void drawSquares(real s, pair A = (0,0)){ filldraw(shift(A)*shift(-2*s, -s)*xscale(s)*yscale(s)*unitsquare,colors[0]); filldraw(shift(A)*shift(-2*s,-2*s)*xscale(s)*yscale(s)*unitsquare,colors[1]); filldraw(shift(A)*shift(-s ,-2*s)*xscale(s)*yscale(s)*unitsquare,colors[2]); } for(int i = 0; i < n; ++i) drawSquares(h/2^i); drawSquares(h,shiftL); draw(shift(shiftL+(-2*h,-2*h))*xscale(2*h)*yscale(2*h)*unitsquare); label("$\cdots$",shiftL+(-h/2,-h/2)); [/asy]](http://latex.artofproblemsolving.com/f/0/b/f0b0d378c16007488639dde8c3db62d0b4b19757.png)
Another proof of the identity .
Geometry
Miscellaneous
![[asy]unitsize(15); defaultpen(linewidth(0.7)); real a=2.5,b=5,s=a+b; pen colors[] = {rgb(0.9,0.2,0.2), rgb(0.2,0.9,0.2), rgb(0.2,0.2,0.9)}; pen sm = fontsize(8); void fillrect(pair A, pair B, pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } void htick(pair A, pair B, pair ticklength = (0.2,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } fillrect((0,0),(s,s)); fillrect((a,b),(s,s),colors[0]); filldraw((0,a)--(a,a)--(s/2,s/2)--(a,b)--(a,s)--(0,s)--cycle,colors[1],linewidth(1)); filldraw((0,0)--(b,0)--(b,b)--(a,a)--(0,a)--cycle,colors[2],linewidth(1)); draw((0,0)--(a,a),linewidth(1)); draw((s/2,s/2)--(b,a)--(a,a)--(a,b),linewidth(0.7)+linetype("4 2")); htick((s+1,0),(s+1,b)); htick((s+1,b),(s+1,s)); /* in labels, a,b swapped */ label("$a$",(s+1,b/2),E);label("$b$",(s+1,(s+b)/2),E); label("$ab$",(a+s,b+s)/2,sm); label("$\frac{(a+b)^2}{4}$",(a,a+s)/2,sm); label("$\frac{a^2}2$",(s/2,a*2/3),sm); label("$\frac{b^2}2$",(a/4,a*2/3),sm); [/asy]](http://latex.artofproblemsolving.com/1/7/b/17b7d227148c002ef58e4b0ab8e99024c2d844d1.png)
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality,
![$\color{red}{ab} \color{black} \le \color{green} \frac{(a+b)^2}{4} \color{black} \le \color{blue} \frac{a^2 + b^2}{2}$](http://latex.artofproblemsolving.com/7/1/2/7125d32816aebd2c625a543e5df33e45bab32bfc.png)
![[asy] unitsize(15); defaultpen(linewidth(0.7)); void htick(pair A, pair B,pair ticklength = (0,0.15)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } real a=10,b=3,r=(a+b)/2; pen sm = fontsize(8), dark = linewidth(1); pen colors[] = {rgb(0.9,0.2,0.2) + dark, /* GM */ rgb(0.2,0.9,0.2) + dark, /* AM */ rgb(0.2,0.2,0.9) + dark, /* QM */ rgb(0.2,0.9,0.9) + dark }; /* HM */ pair A = (r-b,(r^2-(r-a)^2)^.5),B=foot((A.x,0),(0,0),A); draw(arc((0,0),r,0,180)--cycle); dot(A); dot((0,r)); dot((A.x,0)); dot((0,0)); draw(B--A,colors[3]); label("HM",(A+B)/2, E, sm+colors[3]); draw((0,0)--(0,r),colors[1]); label("AM",(0,r*2/3), NW, sm+colors[1]); draw((A.x,0)--A,colors[0]); label("GM",(A.x,A.y/2), SE, sm+colors[0]); draw((A.x,0)--(0,r),colors[2]); label("RMS",(A.x/5,r*4/5), NE, sm+colors[2]); draw((-r,0)--A--(r,0), linetype("4 2")); draw((0,0)--B--(A.x,0), linetype("4 2")); draw(rightanglemark((-r,0),A,(r,0))); draw(rightanglemark((0,0),B,(A.x,0))); htick((-r,-1),(A.x,-1)); htick((A.x,-1),(r,-1)); label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); [/asy]](http://latex.artofproblemsolving.com/f/b/c/fbc7c9442d05431c8665be2a1052a21c3ec7874e.png)
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[2]
![[asy] unitsize(15); defaultpen(linewidth(0.7)); real r = 0.3, row1 = 3.5, row2 = 0, row3 = -3.5; void necklace(pair k, pen colors[]){ draw(shift(k)*unitcircle); for(int i = 0; i < colors.length; ++i){ pair p = k+expi(pi/2+2*pi*i/colors.length); fill(Circle(p,r),colors[i]); draw(Circle(p,r)); } } void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* draw necklaces */ pen BEADS1[] = {red,red,red},BEADS2[] = {blue,blue,blue},BEADS3[] = {red,red,blue},BEADS4[] = {blue,red,red},BEADS5[] = {red,blue,red},BEADS6[] = {blue,blue,red},BEADS7[] = {red,blue,blue},BEADS8[] = {blue,red,blue}; necklace((-10,(row2+row3)/2),BEADS1);necklace((-7.5,(row2+row3)/2),BEADS2); necklace((-2.5,row2),BEADS3);necklace((0,row2),BEADS4);necklace((2.5,row2),BEADS5); necklace((-2.5,row3),BEADS6);necklace((0,row3),BEADS7);necklace((2.5,row3),BEADS8); /* box them and label */ draw((-4,row2-1.3)--(4,row2-1.3)--(4,row2+1.6)--(-4,row2+1.6)--cycle,linewidth(0.9)+linetype("4 2")); draw((-4,row3-1.3)--(4,row3-1.3)--(4,row3+1.6)--(-4,row3+1.6)--cycle,linewidth(0.9)+linetype("4 2")); htick((-4,row2+2),(4,row2+2),(0,0.15)); label("$p$",(0,row2+2),N,fontsize(10)); htick((-11.5,(row2+row3)/2+2),(-6,(row2+row3)/2+2),(0,0.15)); label("$a$",(-17.5/2,(row2+row3)/2+2),N,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/1/8/4/184e1a740aad3360df022cc73483e55119ef068c.png)
Fermat's Little Theorem: for
(above
).
References
- ^ MathOverflow
- ^ This is more of a proof without words of the AM-GM inequality
; though the lengths of the segments labeled RMS and HM can easily be verified to have values of
, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.