Difference between revisions of "2010 AIME I Problems/Problem 3"

m (Semi-automated contest formatting - script by azjps)
 
(credit to RminusQ)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Suppose that <math>y = \frac34x</math> and <math>x^y = y^x</math>. The quantity <math>x + y</math> can be expressed as a rational number <math>\frac {r}{s}</math>, where <math>r</math> and <math>s</math> are relatively prime positive integers. Find <math>r + s</math>.
 +
 +
== Solution ==
 +
We solve in general using <math>c</math> instead of <math>3/4</math>. Substituting <math>y = cx</math>, we have:
 +
 +
<center><cmath>x^{cx} = (cx)^x \Longrightarrow (x^x)^c = c^x\cdot x^x</cmath></center>
 +
 +
Dividing by <math>x^x</math>, we get <math>(x^x)^{c - 1} = c^x</math>.
 +
 +
Taking the <math>x</math>th root, <math>x^{c - 1} = c</math>, or <math>x = c^{1/(c - 1)}</math>.
 +
 +
In the case <math>c = \frac34</math>, <math>x = \Bigg(\frac34\Bigg)^{ - 4} = \frac43^4 = \frac {256}{81}</math>, <math>y = \frac {64}{27}</math>, <math>x + y = \frac {256 + 192}{81} = \frac {448}{81}</math>, yielding an answer of <math>448 + 81 = \boxed{529}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 12:19, 17 March 2010

Problem

Suppose that $y = \frac34x$ and $x^y = y^x$. The quantity $x + y$ can be expressed as a rational number $\frac {r}{s}$, where $r$ and $s$ are relatively prime positive integers. Find $r + s$.

Solution

We solve in general using $c$ instead of $3/4$. Substituting $y = cx$, we have:

\[x^{cx} = (cx)^x \Longrightarrow (x^x)^c = c^x\cdot x^x\]

Dividing by $x^x$, we get $(x^x)^{c - 1} = c^x$.

Taking the $x$th root, $x^{c - 1} = c$, or $x = c^{1/(c - 1)}$.

In the case $c = \frac34$, $x = \Bigg(\frac34\Bigg)^{ - 4} = \frac43^4 = \frac {256}{81}$, $y = \frac {64}{27}$, $x + y = \frac {256 + 192}{81} = \frac {448}{81}$, yielding an answer of $448 + 81 = \boxed{529}$.

See also

2010 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions