Difference between revisions of "2003 AMC 12A Problems/Problem 23"

(Solution)
Line 15: Line 15:
 
Using logarithmic rules, we see that
 
Using logarithmic rules, we see that
  
<cmath>\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a</cmath>
+
<cmath>\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a)</cmath>
 
<cmath>=2-(\log_{a}b+\frac {1}{\log_{a}b})</cmath>
 
<cmath>=2-(\log_{a}b+\frac {1}{\log_{a}b})</cmath>
  

Revision as of 18:42, 22 February 2010

Problem

If $a\geq b > 1,$ what is the largest possible value of $\log_{a}(a/b) + \log_{b}(b/a)?$

$\mathrm{(A)}\ -2      \qquad \mathrm{(B)}\ 0     \qquad \mathrm{(C)}\ 2      \qquad \mathrm{(D)}\ 3      \qquad \mathrm{(E)}\ 4$

Solution

Using logarithmic rules, we see that

\[\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a)\] \[=2-(\log_{a}b+\frac {1}{\log_{a}b})\]

Since $a$ and $b$ are both positive, using AM-GM gives that the term in parentheses must be at least $2$, so the largest possible values is $2-2=\boxed{0}.$

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions