Difference between revisions of "2003 AMC 12A Problems/Problem 23"

(Solution)
Line 1: Line 1:
 +
== Problem 23 ==
 +
 +
If <math>a\geq b > 1,</math> what is the largest possible value of <math>\log_{a}(a/b) + \log_{b}(b/a)?</math>
 +
 +
<math>
 +
\mathrm{(A)}\ -2      \qquad
 +
\mathrm{(B)}\ 0    \qquad
 +
\mathrm{(C)}\ 2      \qquad
 +
\mathrm{(D)}\ 3      \qquad
 +
\mathrm{(E)}\ 4
 +
</math>
 +
 
== Solution ==
 
== Solution ==
  

Revision as of 17:34, 22 February 2010

Problem 23

If $a\geq b > 1,$ what is the largest possible value of $\log_{a}(a/b) + \log_{b}(b/a)?$

$\mathrm{(A)}\ -2      \qquad \mathrm{(B)}\ 0     \qquad \mathrm{(C)}\ 2      \qquad \mathrm{(D)}\ 3      \qquad \mathrm{(E)}\ 4$

Solution

Using logarithmic rules, we see that

\[\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a\] \[=2-(\log_{a}b+\frac {1}{\log_{a}b})\]

Since $a$ and $b$ are both positive, using AM-GM gives that the term in parentheses must be at least $2$, so the largest possible values is $2-2=\boxed{0}.$