Difference between revisions of "2006 AMC 10B Problems/Problem 23"
(→Solution) |
|||
Line 58: | Line 58: | ||
Since triangles <math>AFC</math> and <math>DFC</math> share an altitude from <math>C</math> and their respective bases are equal, their areas must be equal, hence <math>x+3=y</math>. | Since triangles <math>AFC</math> and <math>DFC</math> share an altitude from <math>C</math> and their respective bases are equal, their areas must be equal, hence <math>x+3=y</math>. | ||
− | Since triangles <math>EFA</math> and <math>BFA</math> share an altitude from <math>A</math> and their respective areas are in the ratio <math>3:7</math>, their bases must be in the same ratio, hence <math> | + | Since triangles <math>EFA</math> and <math>BFA</math> share an altitude from <math>A</math> and their respective areas are in the ratio <math>3:7</math>, their bases must be in the same ratio, hence <math>EF:FB = 3:7</math>. |
− | Since triangles <math>EFC</math> and <math>BFC</math> share an altitude from <math> | + | Since triangles <math>EFC</math> and <math>BFC</math> share an altitude from <math>C</math> and their respective bases are in the ratio <math>3:7</math>, their areas must be in the same ratio, hence <math>x:(y+7) = 3:7</math>, which gives us <math>7x = 3(y+7)</math>. |
Substituting <math>y=x+3</math> into the second equation we get <math>7x = 3(x+10)</math>, which solves to <math>x=\frac{15}{2}</math>. Then <math>y=x+3 = \frac{15}{2}+3 = \frac{21}{2}</math>, and the total area of the quadrilateral is <math>x+y = \frac{15}{2}+\frac{21}{2} = \boxed{18}</math>. | Substituting <math>y=x+3</math> into the second equation we get <math>7x = 3(x+10)</math>, which solves to <math>x=\frac{15}{2}</math>. Then <math>y=x+3 = \frac{15}{2}+3 = \frac{21}{2}</math>, and the total area of the quadrilateral is <math>x+y = \frac{15}{2}+\frac{21}{2} = \boxed{18}</math>. |
Revision as of 13:57, 7 July 2009
Problem
A triangle is partitioned into three triangles and a quadrilateral by drawing two lines from vertices to their opposite sides. The areas of the three triangles are 3, 7, and 7 as shown. What is the area of the shaded quadrilateral?
Solution
Label the points in the figure as shown below, and draw the segment . This segment divides the quadrilateral into two triangles, let their areas be and .
Since triangles and share an altitude from and have equal area, their bases must be equal, hence .
Since triangles and share an altitude from and their respective bases are equal, their areas must be equal, hence .
Since triangles and share an altitude from and their respective areas are in the ratio , their bases must be in the same ratio, hence .
Since triangles and share an altitude from and their respective bases are in the ratio , their areas must be in the same ratio, hence , which gives us .
Substituting into the second equation we get , which solves to . Then , and the total area of the quadrilateral is .