Difference between revisions of "2009 AIME II Problems/Problem 13"
Aimesolver (talk | contribs) (→Computing the product of sines) |
m (→Solution 1) |
||
Line 20: | Line 20: | ||
So <math>n</math> = <math>(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {2\pi}{7})\dots(1 - cos \frac{6\pi}{7})</math>. It can be rearranged to form | So <math>n</math> = <math>(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {2\pi}{7})\dots(1 - cos \frac{6\pi}{7})</math>. It can be rearranged to form | ||
− | <math>n</math> = <math>(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {6\pi}{7})\dots(1 - cos \frac {3\pi}{7})(1 - cos \frac { | + | <math>n</math> = <math>(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {6\pi}{7})\dots(1 - cos \frac {3\pi}{7})(1 - cos \frac {4\pi}{7})</math>. |
<math>cos a</math> = - <math>cos (\pi - a)</math>, so we have | <math>cos a</math> = - <math>cos (\pi - a)</math>, so we have |
Revision as of 20:49, 11 June 2009
Contents
Problem
Let and be the endpoints of a semicircular arc of radius . The arc is divided into seven congruent arcs by six equally spaced points , , , . All chords of the form or are drawn. Let be the product of the lengths of these twelve chords. Find the remainder when is divided by .
Solution
Solution 1
Let be the midpoint of and . Assume is closer to instead of . = . Using the Law of Cosines,
= , = , . . . =
So = . It can be rearranged to form
= .
= - , so we have
=
=
=
It can be shown that = , so = = = , so the answer is
Solution 2
Note that for each the triangle is a right triangle. Hence the product is twice the area of the triangle . Knowing that , the area of can also be expressed as , where is the length of the altitude from onto . Hence we have .
By the definition of we obviously have .
From these two observations we get that the product we should compute is equal to , which is the same identity as in Solution 1.
Computing the product of sines
In this section we show one way how to evaluate the product .
Let . The numbers are the -th complex roots of unity. In other words, these are the roots of the polynomial . Then the numbers are the roots of the polynomial .
We just proved the identity . Substitute . The right hand side is obviously equal to . Let's now examine the left hand side. We have:
Therefore the size of the left hand side in our equation is . As the right hand side is , we get that . However, since sin = sin , then would be the square root of , or , which is what we needed to find.
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |