Difference between revisions of "2006 AMC 10A Problems/Problem 16"

m (Fixed a minor terminology error.)
m (Solution)
Line 19: Line 19:
 
<div style="text-align:center;"><math>\frac{AD}{AF} = \frac{DO_1}{CF} \Longrightarrow \frac{2\sqrt{2}}{8} = \frac{1}{CF} \Longrightarrow CF = 2\sqrt{2}</math></div>
 
<div style="text-align:center;"><math>\frac{AD}{AF} = \frac{DO_1}{CF} \Longrightarrow \frac{2\sqrt{2}}{8} = \frac{1}{CF} \Longrightarrow CF = 2\sqrt{2}</math></div>
  
The area of the triangle is <math>\frac{1}{2}bh = \frac{1}{2}\left(2\cdot 2\sqrt{2}\right)\left(8\right) = 16\sqrt{2}\ \mathrm{(D)}</math>.
+
The area of the triangle is <math>\frac{1}{2}\cdot AF \cdot BC = \frac{1}{2}\cdot AF \cdot (2\cdot CF) = AF \cdot CF = 8\left(2\sqrt{2}\right) = 16\sqrt{2}\ \mathrm{(D)}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 11:23, 6 June 2009

Problem

2006 AMC10A-16.png

A circle of radius 1 is tangent to a circle of radius 2. The sides of $\triangle ABC$ are tangent to the circles as shown, and the sides $\overline{AB}$ and $\overline{AC}$ are congruent. What is the area of $\triangle ABC$?

$\mathrm{(A) \ } \frac{35}{2}\qquad\mathrm{(B) \ } 15\sqrt{2}\qquad\mathrm{(C) \ } \frac{64}{3}\qquad\mathrm{(D) \ } 16\sqrt{2}\qquad\mathrm{(E) \ } 24\qquad$

Solution

2006 AMC10A-16a.png

Note that $\triangle ADO_1 \sim \triangle AEO_2 \sim \triangle AFC$. Using the first pair of similar triangles, we write the proportion:

$\frac{AO_1}{AO_2} = \frac{DO_1}{EO_2} \Longrightarrow \frac{AO_1}{AO_1 + 3} = \frac{1}{2} \Longrightarrow AO_1 = 3$

By the Pythagorean Theorem we have that $AD = \sqrt{3^2-1^2} = \sqrt{8}$.

Now using $\triangle ADO_1 \sim \triangle AFC$,

$\frac{AD}{AF} = \frac{DO_1}{CF} \Longrightarrow \frac{2\sqrt{2}}{8} = \frac{1}{CF} \Longrightarrow CF = 2\sqrt{2}$

The area of the triangle is $\frac{1}{2}\cdot AF \cdot BC = \frac{1}{2}\cdot AF \cdot (2\cdot CF) = AF \cdot CF = 8\left(2\sqrt{2}\right) = 16\sqrt{2}\ \mathrm{(D)}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions