Difference between revisions of "1993 AIME Problems/Problem 15"
(the WOOT group did this problem. I was part of it. Somebody put the image up.) |
5849206328x (talk | contribs) (Image added) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | + | ||
+ | <asy> | ||
+ | unitsize(48); | ||
+ | pair A,B,C,H; | ||
+ | A=(8,0); B=origin; C=(3,4); H=(3,0); draw(A--B--C--cycle); draw(C--H); | ||
+ | label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,N); label("$H$",H,NE); | ||
+ | draw(circle((2,1),1)); | ||
+ | pair [] x=intersectionpoints(C--H,circle((2,1),1)); | ||
+ | dot(x[0]); label("$S$",x[0],SW); | ||
+ | draw(circle((4.29843788128,1.29843788128),1.29843788128)); | ||
+ | pair [] y=intersectionpoints(C--H,circle((4.29843788128,1.29843788128),1.29843788128)); | ||
+ | dot(y[0]); label("$R$",y[0],NE); | ||
+ | label("$1993$",(1.5,2),NW); label("$1994$",(5.5,2),NE); label("$1995$",(4,0),S); | ||
+ | </asy> | ||
From the [[Pythagorean Theorem]], <math>AH^2+CH^2=1994^2</math>, and <math>(1995-AH)^2+CH^2=1993^2</math>. Subtracting those two equations yields <math>AH^2-(1995-AH)^2=3987</math>. After simplification, we see that <math>2*1995AH-1995^2=3987</math>, or <math>AH=\frac{1995}{2}+\frac{3987}{2*1995}</math>. Note that <math>AH+BH=1995</math>. Therefore we have that <math>BH=\frac{1995}{2}-\frac{3987}{2*1995}</math>. Therefore <math>AH-BH=\frac{3987}{1995}</math>. | From the [[Pythagorean Theorem]], <math>AH^2+CH^2=1994^2</math>, and <math>(1995-AH)^2+CH^2=1993^2</math>. Subtracting those two equations yields <math>AH^2-(1995-AH)^2=3987</math>. After simplification, we see that <math>2*1995AH-1995^2=3987</math>, or <math>AH=\frac{1995}{2}+\frac{3987}{2*1995}</math>. Note that <math>AH+BH=1995</math>. Therefore we have that <math>BH=\frac{1995}{2}-\frac{3987}{2*1995}</math>. Therefore <math>AH-BH=\frac{3987}{1995}</math>. | ||
− | Now note that <math>RS=|HR-HS|</math>, <math>RH=\frac{ | + | Now note that <math>RS=|HR-HS|</math>, <math>RH=\frac{AH+CH-AC}{2}</math>, and <math>HS=\frac{CH+BH-BC}{2}</math>. Therefore we have |
− | <math>RS=|\frac{ | + | <math>RS=\left| \frac{AH+CH-AC-CH-BH+BC}{2} \right|=\frac{|AH-BH-1994+1993|}{2}</math>. |
− | Plugging in <math>AH-BH</math> and simplifying, we have <math>RS=\frac{1992}{1995*2}=\frac{332}{665}</math>. | + | Plugging in <math>AH-BH</math> and simplifying, we have <math>RS=\frac{1992}{1995*2}=\frac{332}{665} \rightarrow 332+665=\boxed{997}</math>. |
== See also == | == See also == | ||
{{AIME box|year=1993|num-b=14|after=Last question}} | {{AIME box|year=1993|num-b=14|after=Last question}} | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 12:54, 20 April 2009
Problem
Let be an altitude of . Let and be the points where the circles inscribed in the triangles and are tangent to . If , , and , then can be expressed as , where and are relatively prime integers. Find .
Solution
From the Pythagorean Theorem, , and . Subtracting those two equations yields . After simplification, we see that , or . Note that . Therefore we have that . Therefore .
Now note that , , and . Therefore we have
.
Plugging in and simplifying, we have .
See also
1993 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |