Difference between revisions of "2009 AIME II Problems/Problem 13"

(See Also)
Line 1: Line 1:
 
 
== Problem ==
 
== Problem ==
  
Line 8: Line 7:
 
== Solution ==
 
== Solution ==
  
 +
=== Solution 1 ===
  
 
Let <math>O</math> be the midpoint of <math>A</math> and <math>B</math>. Assume <math>C_1</math> is closer to <math>A</math> instead of <math>B</math>.  <math>\angle AOC_1</math> = <math>\frac {\pi}{7}</math>. Using the [[Law of Cosines]],  
 
Let <math>O</math> be the midpoint of <math>A</math> and <math>B</math>. Assume <math>C_1</math> is closer to <math>A</math> instead of <math>B</math>.  <math>\angle AOC_1</math> = <math>\frac {\pi}{7}</math>. Using the [[Law of Cosines]],  
Line 31: Line 31:
  
 
It can be shown that <math>sin \frac {\pi}{7} sin \frac {2\pi}{7} sin \frac {3\pi}{7}</math> = <math>\frac {\sqrt {7}}{8}</math>, so <math>n</math> = <math>8^6(\frac {\sqrt {7}}{8})^2</math> = <math>7(8^4)</math> = <math>28672</math>, so the answer is <math>\boxed {672}</math>
 
It can be shown that <math>sin \frac {\pi}{7} sin \frac {2\pi}{7} sin \frac {3\pi}{7}</math> = <math>\frac {\sqrt {7}}{8}</math>, so <math>n</math> = <math>8^6(\frac {\sqrt {7}}{8})^2</math> = <math>7(8^4)</math> = <math>28672</math>, so the answer is <math>\boxed {672}</math>
 +
 +
=== Solution 2 ===
 +
 +
Note that for each <math>k</math> the triangle <math>ABC_k</math> is a right triangle. Hence the product <math>AC_k \cdot BC_k</math> is twice the area of the triangle <math>ABC_k</math>. Knowing that <math>AB=4</math>, the area of <math>ABC_k</math> can also be expressed as <math>2c_k</math>, where <math>c_k</math> is the length of the altitude from <math>C_k</math> onto <math>AB</math>. Hence we have <math>AC_k \cdot BC_k = 4c_k</math>.
 +
 +
By the definition of <math>C_k</math> we obviously have <math>c_k = 2\sin\frac{k\pi}7</math>.
 +
 +
From these two observations we get that the product we should compute is equal to <math> 8^6 \cdot \prod_{k=1}^6 \sin \frac{k\pi}7 </math>, which is the same identity as in Solution 1.
 +
 +
=== Computing the product of sines ===
 +
 +
In this section we show one way how to evaluate the product <math>\prod_{k=1}^6 \sin \frac{k\pi}7 </math>.
 +
 +
Let <math>\omega_k = \cos \frac{2k\pi}7 + i\sin \frac{2k\pi}7</math>. The numbers <math>1,\omega_1,\omega_2,\dots,\omega_6</math> are the <math>7</math>-th complex roots of unity. In other words, these are the roots of the polynomial <math>x^7-1</math>. Then the numbers <math>\omega_1,\omega_2,\dots,\omega_6</math> are the roots of the polynomial <math>\frac{x^7-1}{x-1} = x^6+x^5+\cdots+x+1</math>.
 +
 +
We just proved the identity <math>\prod_{k=1}^6 (x - \omega_k) = x^6+x^5+\cdots+x+1</math>.
 +
Substitute <math>x=1</math>. The right hand side is obviously equal to <math>7</math>. Let's now examine the left hand side.
 +
We have:
 +
 +
<cmath>
 +
\begin{align*}
 +
|1-\omega_k|
 +
& =
 +
\left| 1-\cos \frac{2k\pi}7 - i\sin \frac{2k\pi}7 \right|
 +
\\
 +
& = \sqrt{ \left( 1-\cos \frac{2k\pi}7 \right)^2 + \left( \sin \frac{2k\pi}7 \right)^2 }
 +
\\
 +
& = \sqrt{  2-2\cos \frac{2k\pi}7 }
 +
\\
 +
& = \sqrt{  2-2 \left( 1 - 2 \left( \sin \frac{k\pi}7 \right)^2 \right) }
 +
\\
 +
& = \sqrt{  4\left( \sin \frac{k\pi}7 \right)^2 }
 +
\\
 +
& = 2 \sin \frac{k\pi}7
 +
\end{align*}
 +
</cmath>
 +
 +
Therefore the size of the left hand side in our equation is <math>\prod_{k=1}^6 |1-\omega_k| = \prod_{k=1}^6 2 \sin \frac{k\pi}7 = 2^6 \prod_{k=1}^6 \sin \frac{k\pi}7</math>. As the right hand side is <math>7</math>, we get that <math>\prod_{k=1}^6 \sin \frac{k\pi}7 = \frac{7}{2^6}</math>.
  
 
== See Also ==
 
== See Also ==
  
 
{{AIME box|year=2009|n=II|num-b=12|num-a=14}}
 
{{AIME box|year=2009|n=II|num-b=12|num-a=14}}

Revision as of 20:43, 18 April 2009

Problem

Let $A$ and $B$ be the endpoints of a semicircular arc of radius $2$. The arc is divided into seven congruent arcs by six equally spaced points $C_1$, $C_2$, $\dots$, $C_6$. All chords of the form $\overline {AC_i}$ or $\overline {BC_i}$ are drawn. Let $n$ be the product of the lengths of these twelve chords. Find the remainder when $n$ is divided by $1000$.


Solution

Solution 1

Let $O$ be the midpoint of $A$ and $B$. Assume $C_1$ is closer to $A$ instead of $B$. $\angle AOC_1$ = $\frac {\pi}{7}$. Using the Law of Cosines,

$\overline {AC_1}^2$ = $8 - 8 cos \frac {\pi}{7}$, $\overline {AC_2}^2$ = $8 - 8 cos \frac {2\pi}{7}$, . . . $\overline {AC_6}^2$ = $8 - 8 cos \frac {6\pi}{7}$

So $n$ = $(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {2\pi}{7})\dots(1 - cos \frac{6\pi}{7})$. It can be rearranged to form

$n$ = $(8^6)(1 - cos \frac {\pi}{7})(1 - cos \frac {6\pi}{7})\dots(1 - cos \frac {3\pi}{7})(1 - cos \frac {2\pi}{4})$.

$cos a$ = - $cos (\pi - a)$, so we have

$n$ = $(8^6)(1 - cos \frac {\pi}{7})(1 + cos \frac {\pi}{7}) \dots (1 - cos \frac {3\pi}{7})(1 + cos \frac {3\pi}{7})$

= $(8^6)(1 - cos^2 \frac {\pi}{7})(1 - cos^2 \frac {2\pi}{7})(1 - cos^2 \frac {3\pi}{7})$

= $(8^6)(sin^2 \frac {\pi}{7})(sin^2 \frac {2\pi}{7})(sin^2 \frac {3\pi}{7})$

It can be shown that $sin \frac {\pi}{7} sin \frac {2\pi}{7} sin \frac {3\pi}{7}$ = $\frac {\sqrt {7}}{8}$, so $n$ = $8^6(\frac {\sqrt {7}}{8})^2$ = $7(8^4)$ = $28672$, so the answer is $\boxed {672}$

Solution 2

Note that for each $k$ the triangle $ABC_k$ is a right triangle. Hence the product $AC_k \cdot BC_k$ is twice the area of the triangle $ABC_k$. Knowing that $AB=4$, the area of $ABC_k$ can also be expressed as $2c_k$, where $c_k$ is the length of the altitude from $C_k$ onto $AB$. Hence we have $AC_k \cdot BC_k = 4c_k$.

By the definition of $C_k$ we obviously have $c_k = 2\sin\frac{k\pi}7$.

From these two observations we get that the product we should compute is equal to $8^6 \cdot \prod_{k=1}^6 \sin \frac{k\pi}7$, which is the same identity as in Solution 1.

Computing the product of sines

In this section we show one way how to evaluate the product $\prod_{k=1}^6 \sin \frac{k\pi}7$.

Let $\omega_k = \cos \frac{2k\pi}7 + i\sin \frac{2k\pi}7$. The numbers $1,\omega_1,\omega_2,\dots,\omega_6$ are the $7$-th complex roots of unity. In other words, these are the roots of the polynomial $x^7-1$. Then the numbers $\omega_1,\omega_2,\dots,\omega_6$ are the roots of the polynomial $\frac{x^7-1}{x-1} = x^6+x^5+\cdots+x+1$.

We just proved the identity $\prod_{k=1}^6 (x - \omega_k) = x^6+x^5+\cdots+x+1$. Substitute $x=1$. The right hand side is obviously equal to $7$. Let's now examine the left hand side. We have:

\begin{align*} |1-\omega_k|  & =  \left| 1-\cos \frac{2k\pi}7 - i\sin \frac{2k\pi}7 \right|  \\ & = \sqrt{ \left( 1-\cos \frac{2k\pi}7 \right)^2 + \left( \sin \frac{2k\pi}7 \right)^2 }  \\ & = \sqrt{  2-2\cos \frac{2k\pi}7 }  \\ & = \sqrt{  2-2 \left( 1 - 2 \left( \sin \frac{k\pi}7 \right)^2 \right) }  \\ & = \sqrt{  4\left( \sin \frac{k\pi}7 \right)^2 }  \\ & = 2 \sin \frac{k\pi}7  \end{align*}

Therefore the size of the left hand side in our equation is $\prod_{k=1}^6 |1-\omega_k| = \prod_{k=1}^6 2 \sin \frac{k\pi}7 = 2^6 \prod_{k=1}^6 \sin \frac{k\pi}7$. As the right hand side is $7$, we get that $\prod_{k=1}^6 \sin \frac{k\pi}7 = \frac{7}{2^6}$.

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions