|
|
Line 17: |
Line 17: |
| ---- | | ---- |
| | | |
− | '''
| |
− | 2nd solution:'''
| |
| | | |
− | by RJchan18
| |
− |
| |
− | Because this inequality is symmetric, let's examine the first term on the left side of the inquality.
| |
− |
| |
− | let <math>x=a+b, y=a+c</math> and <math>z=b+c</math>. So <math>\frac{(2a+b+c)^2}{2a^2+(b+c)^2}=\frac{(x+y)^2}{(x+y-z)^2+z^2}</math>.
| |
− |
| |
− | Note that <math>(x+y-z)+(z)=x+y</math>. So Let <math>(x+y-z)=m</math>, <math>x+y=m+z</math>. QM-AM gives us <math>\sqrt{\frac{m^2+z^2}{2}</math> <math>\geq \frac{m+z}{2}</math>.
| |
− |
| |
− | Squaring both sides and rearranging the inequality gives us <math>\frac{m^2+z^2}{(m+z)^2}\geq \frac{1}{2}</math> so <math>\frac{(m+z)^2}{m^2+z^2}\leq 2</math> so <math>\frac{(x+y)^2}{(x+y-z)^2+z^2}\leq 2</math> thus <math>\frac{(2a+b+c)^2}{2a^2+(b+c)^2}\leq 2</math>.
| |
− |
| |
− | Performing the same operation on the two other terms on the left and adding the results together completes the proof.
| |
| | | |
| == Resources == | | == Resources == |
Revision as of 14:42, 14 April 2009
Problem
Let , , be positive real numbers. Prove that
Solution
solution by paladin8:
WLOG, assume .
Then the LHS becomes .
Notice , so .
So as desired.
Resources