Difference between revisions of "2009 AIME II Problems/Problem 3"
(→Solution) |
|||
Line 1: | Line 1: | ||
==Solution== | ==Solution== | ||
<center><asy> | <center><asy> | ||
− | pair A=(0,10), B=(0,0), C=(14,0), D=(14,10); | + | pair A=(0,10), B=(0,0), C=(14,0), D=(14,10), Q=(0,5); |
draw (A--B--C--D--cycle); | draw (A--B--C--D--cycle); | ||
pair E=(7,10); | pair E=(7,10); | ||
Line 13: | Line 13: | ||
label("\(D\)",D,NE); | label("\(D\)",D,NE); | ||
label("\(F\)",F,W); | label("\(F\)",F,W); | ||
+ | label("\(100\)",Q,W); | ||
</asy></center> | </asy></center> | ||
− | From the problem, <math>AB=100</math> and triangle <math> | + | From the problem, <math>AB=100</math> and triangle <math>FBA</math> is a right triangle. As <math>ABCD</math> is a rectangle, triangles <math>BCA</math>, and <math>ABE</math> are also right triangles. By <math>AA</math>, <math>\triangle FBA \sim \triangle BCA</math>, and <math>\triangle FBA \sim \triangle ABE</math>, so <math>\triangle ABE \sim \triangle BCA</math>. This gives <math>\frac {AE}{AB}= \frac {AB}{BC}</math>. <math>AE=\frac{AD}{2}</math> and <math>BD=AD</math>, so <math>\frac {AD}{2AB}= \frac {AB}{AD}</math>, or <math>(AD)^2=2(AB)^2</math>, so <math>AD=AB \sqrt{2}</math>, or <math>100 \sqrt{2}</math>, so the answer is <math>\boxed{141}</math>. |
Revision as of 20:15, 11 April 2009
Solution
From the problem, and triangle is a right triangle. As is a rectangle, triangles , and are also right triangles. By , , and , so . This gives . and , so , or , so , or , so the answer is .