Difference between revisions of "2002 AMC 12B Problems/Problem 20"

(soln)
 
Line 24: Line 24:
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=B|num-b=19|num-a=21}}
 
{{AMC12 box|year=2002|ab=B|num-b=19|num-a=21}}
 
[[Category:Introductory Algebra Problems]]
 

Revision as of 01:13, 11 April 2009

Problem

Let $\triangle XOY$ be a right-angled triangle with $m\angle XOY = 90^{\circ}$. Let $M$ and $N$ be the midpoints of legs $OX$ and $OY$, respectively. Given that $XN = 19$ and $YM = 22$, find $XY$.

$\mathrm{(A)}\ 24 \qquad\mathrm{(B)}\ 26 \qquad\mathrm{(C)}\ 28 \qquad\mathrm{(D)}\ 30 \qquad\mathrm{(E)}\ 32$

Solution

2002 12B AMC-20.png

Let $OM = x$, $ON = y$. By the Pythagorean Theorem on $\triangle XON, MOY$ respectively, \begin{align*} (2x)^2 + y^2 &= 19^2\\ x^2 + (2y)^2 &= 22^2\end{align*}

Summing these gives $5x^2 + 5y^2 = 845 \Longrightarrow x^2 + y^2 = 169$.

By the Pythagorean Theorem again, we have

\[(2x)^2 + (2y)^2 = XY^2 \Longrightarrow XY = \sqrt{4(x^2 + y^2)} = 26 \Rightarrow \mathrm{(B)}\]

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions