Difference between revisions of "1999 AIME Problems/Problem 3"
(→Solution) |
(→Solution: Added an alternate solution.) |
||
Line 12: | Line 12: | ||
<math>35</math> has two pairs of positive [[divisor | factors]]: <math>\{1,\ 35\}</math> and <math>\{5,\ 7\}</math>. Respectively, these yield <math>9</math> and <math>3</math> for <math>x</math>, which results in <math>n = 1,\ 9,\ 10,\ 18</math>. The sum is therefore <math>038</math>. | <math>35</math> has two pairs of positive [[divisor | factors]]: <math>\{1,\ 35\}</math> and <math>\{5,\ 7\}</math>. Respectively, these yield <math>9</math> and <math>3</math> for <math>x</math>, which results in <math>n = 1,\ 9,\ 10,\ 18</math>. The sum is therefore <math>038</math>. | ||
+ | |||
+ | ==Alternate Solution== | ||
+ | |||
+ | Suppose there is some <math>k</math> such that <math>x^2 - 19x + 99 = k^2</math>. Completing the square, we have that <math>(x - 19/2)^2 + 99 - (19/2)^2 = k^2</math>, that is, <math>(x - 19/2)^2 + 35/4 = k^2</math>. Multiplying both sides by 4 and rearranging, we see that <math>(2k)^2 - (2x - 19)^2 = 35</math>. Thus, <math>(2k - 2x + 19)(2k + 2x - 19) = 35</math>. We then proceed as we did in the previous solution. | ||
== See also == | == See also == |
Revision as of 22:43, 7 March 2009
Problem
Find the sum of all positive integers for which is a perfect square.
Solution
If the perfect square is represented by , then the equation is . The quadratic formula yields
In order for this to be an integer, the discriminant must also be a perfect square, so for some nonnegative integer . This factors to
has two pairs of positive factors: and . Respectively, these yield and for , which results in . The sum is therefore .
Alternate Solution
Suppose there is some such that . Completing the square, we have that , that is, . Multiplying both sides by 4 and rearranging, we see that . Thus, . We then proceed as we did in the previous solution.
See also
1999 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |