Difference between revisions of "1986 AIME Problems/Problem 9"

(asymptote replacement)
(Solution)
Line 52: Line 52:
 
<math>\frac {2}{\frac {1}{AB} + \frac {1}{BC} + \frac {1}{CA}} = x</math>
 
<math>\frac {2}{\frac {1}{AB} + \frac {1}{BC} + \frac {1}{CA}} = x</math>
 
answer follows after some hideous computation.
 
answer follows after some hideous computation.
 +
===Solution 3===
 +
Refer to the diagram; let <math>a^2=[E'EP]</math>, <math>b^2=[D'DP]</math>, and <math>c^2=[F'FP]</math>. Now, note that <math>[E'BD]</math>, <math>[D'DP]</math>, and <math>[E'EP]</math> are similar, so through some similarities we find that <math>\frac{E'P}{PD}=\frac{a}{b}\implies\frac{E'D}{PD}=\frac{a+b}{b}\implies[E'BD]=b^2\left(\frac{a+b}{b}\right)^2=(a+b)^2</math>. Similarly, we find that <math>[D'AF]=(b+c)^2</math> and <math>[F'CE]=(c+a)^2</math>, so <math>[ABC]=(a+b+c)^2</math>. Now, again from similarity, it follows that <math>\frac{d}{510}=\frac{a+b}{a+b+c}</math>, <math>\frac{d}{450}=\frac{b+c}{a+b+c}</math>, and <math>\frac{d}{425}=\frac{c+a}{a+b+c}</math>, so adding these together, simplifying, and solving gives <math>d=\frac{2}{\frac{1}{425}+\frac{1}{450}+\frac{1}{510}}=\frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}</math>
 +
<math>=\frac{10}{\frac{10}{306}}=\boxed{306}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 22:27, 16 February 2009

Problem

In $\triangle ABC$, $AB= 425$, $BC=450$, and $AC=510$. An interior point $P$ is then drawn, and segments are drawn through $P$ parallel to the sides of the triangle. If these three segments are of an equal length $d$, find $d$.

Solution

Solution 1

[asy] size(200); pathpen = black; pointpen = black +linewidth(0.6); pen s = fontsize(10); pair C=(0,0),A=(510,0),B=IP(circle(C,450),circle(A,425)); /* construct remaining points */ pair Da=IP(Circle(A,289),A--B),E=IP(Circle(C,324),B--C),Ea=IP(Circle(B,270),B--C); pair D=IP(Ea--(Ea+A-C),A--B),F=IP(Da--(Da+C-B),A--C),Fa=IP(E--(E+A-B),A--C);  D(MP("A",A,s)--MP("B",B,N,s)--MP("C",C,s)--cycle); dot(MP("D",D,NE,s));dot(MP("E",E,NW,s));dot(MP("F",F,s));dot(MP("D'",Da,NE,s));dot(MP("E'",Ea,NW,s));dot(MP("F'",Fa,s)); D(D--Ea);D(Da--F);D(Fa--E); MP("450",(B+C)/2,NW);MP("425",(A+B)/2,NE);MP("510",(A+C)/2); [/asy]

Let the points at which the segments hit the triangle be called $D, D', E, E', F, F'$ as shown above. As a result of the lines being parallel, all three smaller triangles and the larger triangle are similar ($\triangle ABC \sim \triangle DPD' \sim \triangle PEE' \sim \triangle F'PF$). The remaining three sections are parallelograms.

Since $PDAF'$ is a parallelogram, we find $PF' = AD$, and similarly $PE = BD'$. So $d = PF' + PE = AD + BD' = 425 - DD'$. Thus $DD' = 425 - d$. By the same logic, $EE' = 450 - d$.

Since $\triangle DPD' \sim \triangle ABC$, we have the proportion:

$\frac{425-d}{425} = \frac{PD}{510} \Longrightarrow PD = 510 - \frac{510}{425}d = 510 - \frac{6}{5}d$

Doing the same with $\triangle PEE'$, we find that $PE' =510 - \frac{17}{15}d$. Now, $d = PD + PE' = 510 - \frac{6}{5}d + 510 - \frac{17}{15}d \Longrightarrow d\left(\frac{50}{15}\right) = 1020 \Longrightarrow d = \boxed{306}$.

Solution 2

Define the points the same as above.

Let $[CE'PF] = a$, $[E'EP] = b$, $[BEPD'] = c$, $[D'PD] = d$, $[DAF'P] = e$ and $[F'D'P] = f$

The key theorem we apply here is that the ratio of the areas of 2 similar triangles is the ratio of a pair of corresponding sides squared.

Let the length of the segment be $x$ and the area of the triangle be $A$, using the theorem, we get:

$\frac {c + e + d}{A} = \left(\frac {x}{BC}\right)^2$, $\frac {b + c + d}{A}= \left(\frac {x}{AC}\right)^2$, $\frac {a + b + f}{A} = \left(\frac {x}{AB}\right)^2$ adding all these together and using $a + b + c + d + e + f = A$ we get $\frac {f + d + b}{A} + 1 = x^2*\left(\frac {1}{BC^2} + \frac {1}{AC^2} + \frac {1}{AB^2}\right)$

Using corresponding angles from parallel lines, it is easy to show that $\triangle ABC \sim \triangle F'PF$, since $ADPF'$ and $CFPE'$ are parallelograms, it is easy to show that $FF' = AC - x$

Now we have the side length ratio, so we have the area ratio $\frac {f}{A} = \left(\frac {AC - x}{AC}\right)^2 = \left(1 - \frac {x}{AC}\right)^2$, by symmetry, we have $\frac {d}{A} = \left(1 - \frac {x}{AB}\right)^2$ and $\frac {b}{A} = \left(1 - \frac {x}{BC}\right)^2$

Substituting these into our initial equation, we have $1 + \sum_{cyc}\left(1 - \frac {x}{AB}\right) - \frac {x^2}{AB^2} = 0$ $1 + \sum_{cyc}1 - 2*\frac {x}{AB} = 0$ $\frac {2}{\frac {1}{AB} + \frac {1}{BC} + \frac {1}{CA}} = x$ answer follows after some hideous computation.

Solution 3

Refer to the diagram; let $a^2=[E'EP]$, $b^2=[D'DP]$, and $c^2=[F'FP]$. Now, note that $[E'BD]$, $[D'DP]$, and $[E'EP]$ are similar, so through some similarities we find that $\frac{E'P}{PD}=\frac{a}{b}\implies\frac{E'D}{PD}=\frac{a+b}{b}\implies[E'BD]=b^2\left(\frac{a+b}{b}\right)^2=(a+b)^2$. Similarly, we find that $[D'AF]=(b+c)^2$ and $[F'CE]=(c+a)^2$, so $[ABC]=(a+b+c)^2$. Now, again from similarity, it follows that $\frac{d}{510}=\frac{a+b}{a+b+c}$, $\frac{d}{450}=\frac{b+c}{a+b+c}$, and $\frac{d}{425}=\frac{c+a}{a+b+c}$, so adding these together, simplifying, and solving gives $d=\frac{2}{\frac{1}{425}+\frac{1}{450}+\frac{1}{510}}=\frac{10}{\frac{1}{85}+\frac{1}{90}+\frac{1}{102}}=\frac{10}{\frac{1}{5}\left(\frac{1}{17}+\frac{1}{18}\right)+\frac{1}{102}}=\frac{10}{\frac{1}{5}\cdot\frac{35}{306}+\frac{3}{306}}$ $=\frac{10}{\frac{10}{306}}=\boxed{306}$.

See also

1986 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions