Difference between revisions of "2009 AMC 12A Problems/Problem 18"
(New page: == Problem == For <math>k > 0</math>, let <math>I_k = 10\ldots 064</math>, where there are <math>k</math> zeros between the <math>1</math> and the <math>6</math>. Let <math>N(k)</math> be...) |
m |
||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2009 AMC 12A Problems|2009 AMC 12A #18]] and [[2009 AMC 10A Problems|2009 AMC 10A #25]]}} | ||
+ | |||
== Problem == | == Problem == | ||
For <math>k > 0</math>, let <math>I_k = 10\ldots 064</math>, where there are <math>k</math> zeros between the <math>1</math> and the <math>6</math>. Let <math>N(k)</math> be the number of factors of <math>2</math> in the prime factorization of <math>I_k</math>. What is the maximum value of <math>N(k)</math>? | For <math>k > 0</math>, let <math>I_k = 10\ldots 064</math>, where there are <math>k</math> zeros between the <math>1</math> and the <math>6</math>. Let <math>N(k)</math> be the number of factors of <math>2</math> in the prime factorization of <math>I_k</math>. What is the maximum value of <math>N(k)</math>? | ||
Line 17: | Line 19: | ||
{{AMC12 box|year=2009|ab=A|num-b=17|num-a=19}} | {{AMC12 box|year=2009|ab=A|num-b=17|num-a=19}} | ||
+ | {{AMC10 box|year=2009|ab=A|num-b=24|after=Last Question}} |
Revision as of 04:17, 13 February 2009
- The following problem is from both the 2009 AMC 12A #18 and 2009 AMC 10A #25, so both problems redirect to this page.
Problem
For , let , where there are zeros between the and the . Let be the number of factors of in the prime factorization of . What is the maximum value of ?
Solution
The number can be written as .
For we have . The first value in the parentheses is odd, the second one is even, hence their sum is odd and we have .
For we have . For the value in the parentheses is odd, hence .
This leaves the case . We have . The value is obviously even. And as , we have , and therefore . Hence the largest power of that divides is , and this gives us the desired maximum of the function : .
See Also
2009 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2009 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |