Difference between revisions of "2008 AMC 10B Problems/Problem 20"

m (Problem)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
{{solution}}
+
 
 +
The easiest way is to write a table of all <math>36</math> possible outcomes, do the sums, and count good outcomes.
 +
 
 +
      1  3  4  5  6  8
 +
    ------------------
 +
1 |  2  4  5  6  7  9
 +
2 |  3  5  6  7  8 10
 +
2 |  3  5  6  7  8 10
 +
3 |  4  6  7  8  9 11
 +
3 |  4  6  7  8  9 11
 +
4 |  5  7  8  9 10 12
 +
 
 +
We see that out of <math>36</math> possible outcomes <math>4</math> give the sum of <math>5</math>, <math>6</math> the sum of <math>7</math>, and <math>4</math> the sum of <math>9</math>, hence the resulting probability is
 +
<math>\frac{4+6+4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}</math>.
 +
 
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=19|num-a=21}}
 
{{AMC10 box|year=2008|ab=B|num-b=19|num-a=21}}

Revision as of 15:33, 25 January 2009

Problem

The faces of a cubical die are marked with the numbers $1$, $2$, $2$, $3$, $3$, and $4$. The faces of another die are marked with the numbers $1$, $3$, $4$, $5$, $6$, and $8$. What is the probability that the sum of the top two numbers will be $5$, $7$, or $9$?

$\mathrm{(A)}\ 5/18\qquad\mathrm{(B)}\ 7/18\qquad\mathrm{(C)}\ 11/18\qquad\mathrm{(D)}\ 3/4\qquad\mathrm{(E)}\ 8/9$

Solution

The easiest way is to write a table of all $36$ possible outcomes, do the sums, and count good outcomes.

     1  3  4  5  6  8
   ------------------
1 |  2  4  5  6  7  9
2 |  3  5  6  7  8 10
2 |  3  5  6  7  8 10
3 |  4  6  7  8  9 11
3 |  4  6  7  8  9 11
4 |  5  7  8  9 10 12

We see that out of $36$ possible outcomes $4$ give the sum of $5$, $6$ the sum of $7$, and $4$ the sum of $9$, hence the resulting probability is $\frac{4+6+4}{36}=\frac{14}{36}=\boxed{\frac{7}{18}}$.


See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions