Difference between revisions of "User:Temperal/The Problem Solver's Resource6"

(this belongs in limits...)
(rmv)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
<br /><br />
+
{{User:Temperal/testtemplate|page 6}}
{| style='background:lime;border-width: 5px;border-color: limegreen;border-style: outset;opacity: 0.8;width:840px;height:300px;position:relative;top:10px;'
 
|+ <span style="background:aqua; border:1px solid black; opacity: 0.6;font-size:30px;position:relative;bottom:8px;border-width: 5px;border-color:blue;border-style: groove;position:absolute;top:50px;right:155px;width:820px;height:40px;padding:5px;">The Problem Solver's Resource</span>
 
|-
 
| style="background:lime; border:1px solid black;height:200px;padding:10px;" | {{User:Temperal/testtemplate|page 6}}
 
 
==<span style="font-size:20px; color: blue;">Number Theory</span>==
 
==<span style="font-size:20px; color: blue;">Number Theory</span>==
 
This section covers [[number theory]], especially [[modulo]]s (moduli?).
 
This section covers [[number theory]], especially [[modulo]]s (moduli?).
Line 39: Line 35:
  
 
[[User:Temperal/The Problem Solver's Resource5|Back to page 5]] | [[User:Temperal/The Problem Solver's Resource7|Continue to page 7]]
 
[[User:Temperal/The Problem Solver's Resource5|Back to page 5]] | [[User:Temperal/The Problem Solver's Resource7|Continue to page 7]]
|}<br /><br />
 

Revision as of 18:19, 10 January 2009

Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 6.

Number Theory

This section covers number theory, especially modulos (moduli?).

Definitions

  • $n\equiv a\pmod{b}$ if $n$ is the remainder when $a$ is divided by $b$ to give an integral amount.
  • $a|b$ (or $a$ divides $b$) if $b=ka$ for some integer $k$.

Special Notation

Occasionally, if two equivalent expressions are both modulated by the same number, the entire equation will be followed by the modulo.

Properties

For any number there will be only one congruent number modulo $m$ between $0$ and $m-1$.

If $a\equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $(a+c) \equiv (b+d) \pmod {m}$.

  • $a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}$
  • $a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}$
  • $a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m}$

Fermat's Little Theorem

For a prime $p$ and a number $a$ such that $a\ne{p}$, $a^{p-1}\equiv 1 \pmod{p}$.

Wilson's Theorem

For a prime $p$, $(p-1)! \equiv -1 \pmod p$.

Fermat-Euler Identitity

If $gcd(a,m)=1$, then $a^{\phi{m}}\equiv1\pmod{m}$, where $\phi{m}$ is the number of relatively prime numbers lower than $m$.

Gauss's Theorem

If $a|bc$ and $(a,b) = 1$, then $a|c$.


Errata

All quadratic residues are $0$ or $1\pmod{4}$and $0$, $1$, or $4$ $\pmod{8}$.

Back to page 5 | Continue to page 7