Difference between revisions of "2002 AMC 10A Problems/Problem 25"

m (whoops)
(Solution)
Line 31: Line 31:
 
So the sides of <math>\triangle CDE</math> are <math>15,36,39</math>, which we recognize to be a <math>5 - 12 - 13</math> [[right triangle]]. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared),
 
So the sides of <math>\triangle CDE</math> are <math>15,36,39</math>, which we recognize to be a <math>5 - 12 - 13</math> [[right triangle]]. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared),
 
<cmath>
 
<cmath>
[ABCD] = [ABE] - [CDE] = \frac {1}{2}\cdot 20 \cdot 48 - \frac {1}{2} \cdot 15 \cdot 36 = \boxed{\mathrm{(C)}\ 210}</cmath>.
+
[ABCD] = [ABE] - [CDE] = \frac {1}{2}\cdot 20 \cdot 48 - \frac {1}{2} \cdot 15 \cdot 36 = \boxed{\mathrm{(C)}\ 210}</cmath>
  
 
== See also ==
 
== See also ==

Revision as of 13:29, 4 January 2009

Problem

In trapezoid $ABCD$ with bases $AB$ and $CD$, we have $AB = 52$, $BC = 12$, $CD = 39$, and $DA = 5$. The area of $ABCD$ is

$\text{(A)}\ 182 \qquad \text{(B)}\ 195 \qquad \text{(C)}\ 210 \qquad \text{(D)}\ 234 \qquad \text{(E)}\ 260$

Solution

It shouldn't be hard to use trigonometry to bash this and find the height, but there is a much easier way. Extend $\overline{AD}$ and $\overline{BC}$ to meet at point $E$:

[asy] size(250); defaultpen(0.8); pair A=(0,0), B = (52,0), C=(52-144/13,60/13), D=(25/13,60/13), F=(100/13,240/13); draw(A--B--C--D--cycle); draw(D--F--C,dashed); label("\(A\)",A,S); label("\(B\)",B,S); label("\(C\)",C,NE); label("\(D\)",D,W); label("\(E\)",F,N); label("39",(C+D)/2,N); label("52",(A+B)/2,S); label("5",(A+D)/2,E); label("12",(B+C)/2,WSW); [/asy]

Since $\overline{AB} || \overline{CD}$ we have $\triangle AEB \sim \triangle DEC$, with the ratio of proportionality being $\frac {39}{52} = \frac {3}{4}$. Thus \begin{align*} \frac {CE}{CE + 12} = \frac {3}{4} & \Longrightarrow CE = 36 \\ \frac {DE}{DE + 5} = \frac {3}{4} & \Longrightarrow DE = 15 \end{align*} So the sides of $\triangle CDE$ are $15,36,39$, which we recognize to be a $5 - 12 - 13$ right triangle. Therefore (we could simplify some of the calculation using that the ratio of areas is equal to the ratio of the sides squared), \[[ABCD] = [ABE] - [CDE] = \frac {1}{2}\cdot 20 \cdot 48 - \frac {1}{2} \cdot 15 \cdot 36 = \boxed{\mathrm{(C)}\ 210}\]

See also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions