Difference between revisions of "2002 AMC 10A Problems/Problem 2"
(New page: ==Problem== Given that a, b, and c are non-zero real numbers, define <math>(a, b, c) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}</math>, find <math>(2, 12, 9)</math>. <math>\text{(A)}\ 4 \q...) |
(see also and stuff) |
||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
<math>(2, 12, 9)=\frac{2}{12}+\frac{12}{9}+\frac{9}{2}=\frac{1}{6}+\frac{4}{3}+\frac{9}{2}=\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=\frac{36}{6}=\boxed{6}</math>. Our answer is then <math>\text{(C)}\ 6 \qquad</math>. | <math>(2, 12, 9)=\frac{2}{12}+\frac{12}{9}+\frac{9}{2}=\frac{1}{6}+\frac{4}{3}+\frac{9}{2}=\frac{1}{6}+\frac{8}{6}+\frac{27}{6}=\frac{36}{6}=\boxed{6}</math>. Our answer is then <math>\text{(C)}\ 6 \qquad</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2002|ab=A|num-b=1|num-a=3}} | ||
+ | |||
+ | [[Category:Introductory Algebra Problems]] |
Revision as of 17:05, 26 December 2008
Problem
Given that a, b, and c are non-zero real numbers, define , find .
Solution
. Our answer is then .
See Also
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |