Difference between revisions of "2000 AMC 12 Problems/Problem 12"
m (rigorize) |
m (M, not B) |
||
Line 8: | Line 8: | ||
&= A \cdot M \cdot C + A \cdot M + M \cdot C + A\cdot C + 13\end{align*}</cmath> | &= A \cdot M \cdot C + A \cdot M + M \cdot C + A\cdot C + 13\end{align*}</cmath> | ||
− | By [[AM-GM]], <math>\frac{(A+1) + ( | + | By [[AM-GM]], <math>\frac{(A+1) + (M+1) + (C+1)}{3} = 5 \ge \sqrt[3]{(A+1)(M+1)(C+1)}</math>; thus <math>(A+1)(M+1)(C+1)</math> is [[maximum|maximized]] at <math>125</math>, which occurs when <math>A=B=C=4</math>. |
<cmath>A \cdot M \cdot C + A \cdot M + M \cdot C + A\cdot C = 125 - 13 = 112 \Rightarrow \mathrm{(E)}</cmath> | <cmath>A \cdot M \cdot C + A \cdot M + M \cdot C + A\cdot C = 125 - 13 = 112 \Rightarrow \mathrm{(E)}</cmath> |
Revision as of 16:19, 6 December 2008
Problem
Let and be nonnegative integers such that . What is the maximum value of ?
Solution
By AM-GM, ; thus is maximized at , which occurs when .
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 11 |
Followed by Problem 13 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |