Difference between revisions of "2001 IMO Problems/Problem 5"

m
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
ABC is a triangle. X lies on BC and AX bisects angle A. Y lies on CA and BY bisects angle B. Angle A is 60o. AB + BX = AY + YB. Find all possible values for angle B.
+
<math>ABC</math> is a [[triangle]]. <math>X</math> lies on <math>BC</math> and <math>AX</math> bisects [[angle]] <math>A</math>. <math>Y</math> lies on <math>CA</math> and <math>BY</math> bisects angle <math>B</math>. Angle <math>A</math> is <math>60^{\circ}</math>. <math>AB + BX = AY + YB</math>. Find all possible values for angle <math>B</math>.
  
 
==Solution==
 
==Solution==
Line 6: Line 6:
  
 
==See also==
 
==See also==
 +
{{IMO box|num-b=4|num-a=6|year=2001}}
  
 
[[Category:Olympiad Geometry Problems]]
 
[[Category:Olympiad Geometry Problems]]

Revision as of 12:57, 2 November 2008

Problem

$ABC$ is a triangle. $X$ lies on $BC$ and $AX$ bisects angle $A$. $Y$ lies on $CA$ and $BY$ bisects angle $B$. Angle $A$ is $60^{\circ}$. $AB + BX = AY + YB$. Find all possible values for angle $B$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2001 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions