Difference between revisions of "Bertrand's Postulate"
m (Bertrand's postulate moved to Bertrand's Postulate: Convention of capitalizing named theorems) |
m (→Formulation) |
||
Line 1: | Line 1: | ||
==Formulation== | ==Formulation== | ||
− | '''Bertrand's postulate''' states that for any [[positive integer]] <math>n</math>, there is a [[prime number|prime]] between <math>n</math> and <math>2n</math>. Despite its name, it is, in fact, a theorem. | + | '''Bertrand's postulate''' states that for any [[positive integer]] <math>n</math>, there is a [[prime number|prime]] between <math>n</math> and <math>2n-2</math>. Despite its name, it is, in fact, a theorem. A more widely known version states that there is a prime between <math>n</math> and <math>2n</math>. |
+ | |||
==Proof== | ==Proof== | ||
It is similar to the proof of Chebyshev's estimates in the [[Prime Number Theorem|prime number theorem]] article but requires a closer look at the [[combinations|binomial coefficient]] <math>2n\choose n</math>. Assuming that the reader is familiar with that proof, the Bertrand postulate can be proved as follows. | It is similar to the proof of Chebyshev's estimates in the [[Prime Number Theorem|prime number theorem]] article but requires a closer look at the [[combinations|binomial coefficient]] <math>2n\choose n</math>. Assuming that the reader is familiar with that proof, the Bertrand postulate can be proved as follows. |
Revision as of 03:45, 18 October 2008
Formulation
Bertrand's postulate states that for any positive integer , there is a prime between and . Despite its name, it is, in fact, a theorem. A more widely known version states that there is a prime between and .
Proof
It is similar to the proof of Chebyshev's estimates in the prime number theorem article but requires a closer look at the binomial coefficient . Assuming that the reader is familiar with that proof, the Bertrand postulate can be proved as follows.
Note that the power with which a prime satisfying appears in the prime factorization of is . Thus,
.
The first product does not exceed and the second one does not exceed . Thus,
The right hand side is strictly greater than for , so it remains to prove the Bertrand postulate for . In order to do it, it suffices to present a sequence of primes starting with in which each prime does not exceed twice the previous one, and the last prime is above . One such possible sequence is .
This article is a stub. Help us out by expanding it.