Difference between revisions of "1973 USAMO Problems/Problem 4"
m (→Solution) |
|||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | Let <math>x</math>, <math>y</math>, and <math>z</math> be the roots of the cubic <math> | + | Let <math>x</math>, <math>y</math>, and <math>z</math> be the roots of the cubic <math>t^3+at^2+bt+c</math>. Let <math>S_1=x+y+z=3</math>, <math>S_2=x^2+y^2+z^2=3</math>, and <math>S_3=x^3+y^3+z^3=3</math>. From this, <math>S_1+a=0</math>, <math>S_2+aS_1+b=0</math>, and <math>S_3+aS_2+bS_1+c=0</math>. Solving each of these, <math>a=-3</math>, <math>b=3</math>, and <math>c=-1</math>. Thus <math>x</math>, <math>y</math>, and <math>z</math> are the roots of the polynomial <math>t^3-3t^2+3t-1=(t-1)^3</math>. Thus <math>x=y=z=1</math>, and there are no other solutions. |
==See also== | ==See also== |
Revision as of 14:33, 4 October 2008
Problem
Determine all the roots, real or complex, of the system of simultaneous equations
![$x+y+z=3$](http://latex.artofproblemsolving.com/a/d/5/ad5ff13ebc979a03c144ba96c88e6281c5556894.png)
,
![$x^3+y^3+z^3=3$](http://latex.artofproblemsolving.com/e/4/7/e47fe3685e8d2812abd631eb34e54bcffd0d2643.png)
Solution
Let ,
, and
be the roots of the cubic
. Let
,
, and
. From this,
,
, and
. Solving each of these,
,
, and
. Thus
,
, and
are the roots of the polynomial
. Thus
, and there are no other solutions.
See also
1973 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |