GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2004 AMC 12B Problems"

(Problem 13)
m (Problem 16)
Line 93: Line 93:
  
 
== Problem 16 ==
 
== Problem 16 ==
 +
 +
A [[function]] <math>f</math> is defined by <math>f(z) = i\overline{z}</math>, where <math>i=\sqrt{-1}</math> and <math>\overline{z}</math> is the [[complex conjugate]] of <math>z</math>. How many values of <math>z</math> satisfy both <math>|z| = 5</math> and <math>f(z) = z</math>?
 +
 +
<math>\mathrm{(A)}\ 0
 +
\qquad\mathrm{(B)}\ 1
 +
\qquad\mathrm{(C)}\ 2
 +
\qquad\mathrm{(D)}\ 4
 +
\qquad\mathrm{(E)}\ 8</math>
 +
  
 
[[2004 AMC 12B Problems/Problem 16|Solution]]
 
[[2004 AMC 12B Problems/Problem 16|Solution]]

Revision as of 20:12, 16 September 2008

Problem 1

At each basketball practice last week, Jenny made twice as many free throws as she made at the previous practice. At her fifth practice she made 48 free throws. How many free throws did she make at the first practice?

$(\mathrm {A}) 3\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 12 \qquad (\mathrm {E}) 15$

Solution

Problem 2

In the expression $c\cdot a^b-d$, the values of $a$, $b$, $c$, and $d$ are 0, 1, 2, and 3, although not necessarily in that order. What is the maximum possible value of the result?

$(\mathrm {A}) 5\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 8 \qquad (\mathrm {D}) 9 \qquad (\mathrm {E}) 10$

Solution

Problem 3

If $x$ and $y$ are positive integers for which $2^x3^y=1296$, what is the value of $x+y$?

$(\mathrm {A}) 8\qquad (\mathrm {B}) 9 \qquad (\mathrm {C}) 10 \qquad (\mathrm {D}) 11 \qquad (\mathrm {E}) 12$

Solution

Problem 4

An integer $x$, with $10\leq x\leq 99$, is to be chosen. If all choices are equally likely, what is the probability that at least one digit of $x$ is a 7?

$(\mathrm {A}) \dfrac{1}{9} \qquad (\mathrm {B}) \dfrac{1}{5} \qquad (\mathrm {C}) dfrac{19}{90} \qquad (\mathrm {D}) \dfrac{2}{9} \qquad (\mathrm {E}) \dfrac{1}{3}$

Solution

Problem 5

On a trip from the United States to Canada, Isabella took $d$ U.S. dollars. At the border she exchanged them all, receiving 10 Canadian dollars for every 7 U.S. dollars. After spending 60 Canadian dollars, she had $d$ Canadian dollars left. What is the sum of the digits of $d$?

$(\mathrm {A}) 5\qquad (\mathrm {B}) 6 \qquad (\mathrm {C}) 7 \qquad (\mathrm {D}) 8 \qquad (\mathrm {E}) 9$

Solution

Problem 6

Minneapolis-St. Paul International Airport is 8 miles southwest of downtown St. Paul and 10 miles southeast of downtown Minneapolis. Which of the follow- ing is closest to the number of miles between downtown St. Paul and downtown Minneapolis?

$(\mathrm {A}) 13\qquad (\mathrm {B}) 14 \qquad (\mathrm {C}) 15 \qquad (\mathrm {D}) 16 \qquad (\mathrm {E}) 17$

Solution

Problem 7

A square has sides of length 10, and a circle centered at one of its vertices has radius 10. What is the area of the union of the regions enclosed by the square and the circle?

$(\mathrm {A}) 200+25\pi \qquad (\mathrm {B}) 100+75\pi \qquad (\mathrm {C}) 75+100\pi \qquad (\mathrm {D}) 100+100\pi \qquad (\mathrm {E}) 100+125\pi$

Solution

Problem 8

A grocer makes a display of cans in which the top row has one can and each lower row has two more cans than the row above it. If the display contains 100 cans, how many rows does it contain?

$(\mathrm {A}) 5 \qquad (\mathrm {B}) 8 \qquad (\mathrm {C}) 9 \qquad (\mathrm {D}) 10 \qquad (\mathrm {E}) 11$

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

If $f(x) = ax+b$ and $f^{-1}(x) = bx+a$ with $a$ and $b$ real, what is the value of $a+b$?

$\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -1 \qquad\mathrm{(C)}\ 0 \qquad\mathrm{(D)}\ 1 \qquad\mathrm{(E)}\ 2$


Solution

Problem 14

Solution

Problem 15

Solution

Problem 16

A function $f$ is defined by $f(z) = i\overline{z}$, where $i=\sqrt{-1}$ and $\overline{z}$ is the complex conjugate of $z$. How many values of $z$ satisfy both $|z| = 5$ and $f(z) = z$?

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2  \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 8$


Solution

Problem 17

Solution

Problem 18

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

Solution

Problem 22

Solution

Problem 23

Solution

Problem 24

Solution

Problem 25

Solution

See also