Difference between revisions of "2008 IMO Problems/Problem 3"
Line 1: | Line 1: | ||
− | (still editing...) | + | (still editing...) |
− | For each sufficiently large prime <math>p</math> of the form <math>4k+1</math>, we shall find a corresponding <math>n</math> satisfying the required condition with the prime number in question being <math>p</math>. Since there exist infinitely many such primes and, for each of them, <math>n \ge \sqrt | + | |
+ | For each sufficiently large prime <math>p</math> of the form <math>4k+1</math>, we shall find a corresponding <math>n</math> satisfying the required condition with the prime number in question being <math>p</math>. Since there exist infinitely many such primes and, for each of them, <math>n \ge \sqrt{p-1}</math>, we will have found infinitely many distinct <math>n</math> satisfying the problem. | ||
+ | |||
+ | Take a prime <math>p</math> of the form <math>4k+1</math> and consider its "sum-of-two squares" representation <math>p=a^2+b^2</math>, which we know to exist for all such primes. If <math>a=1</math> or <math>b=1</math>, then <math>n=b</math> or <math>n=a</math> is our guy, and <math>p=n^2+1 > 2n+\sqrt(2n)</math> as long as <math>p</math> (and hence <math>n</math>) is large enough. |
Revision as of 20:39, 3 September 2008
(still editing...)
For each sufficiently large prime of the form
, we shall find a corresponding
satisfying the required condition with the prime number in question being
. Since there exist infinitely many such primes and, for each of them,
, we will have found infinitely many distinct
satisfying the problem.
Take a prime of the form
and consider its "sum-of-two squares" representation
, which we know to exist for all such primes. If
or
, then
or
is our guy, and
as long as
(and hence
) is large enough.