Difference between revisions of "2000 AIME II Problems/Problem 14"
(solution) |
(less notation) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Every positive integer <math>k</math> has a unique factorial base expansion <math>(f_1,f_2,f_3,\ldots,f_m)</math>, meaning that <math>k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m</math>, where each <math>f_i</math> is an integer, <math>0\le f_i\le i</math>, and <math>0<f_m</math>. Given that <math>(f_1,f_2,f_3,\ldots,f_j)</math> is the factorial base expansion of <math>16!-32!+48!-64!+\cdots+1968!-1984!+2000!</math>, find the value of <math>f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j</math>. | + | Every positive [[integer]] <math>k</math> has a unique factorial base expansion <math>(f_1,f_2,f_3,\ldots,f_m)</math>, meaning that <math>k=1!\cdot f_1+2!\cdot f_2+3!\cdot f_3+\cdots+m!\cdot f_m</math>, where each <math>f_i</math> is an integer, <math>0\le f_i\le i</math>, and <math>0<f_m</math>. Given that <math>(f_1,f_2,f_3,\ldots,f_j)</math> is the factorial base expansion of <math>16!-32!+48!-64!+\cdots+1968!-1984!+2000!</math>, find the value of <math>f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j</math>. |
+ | __TOC__ | ||
== Solution == | == Solution == | ||
+ | === Solution 1 === | ||
Note that <math>1+\sum_{k=1}^{n-1} {k\cdot k!} = 1+\sum_{k=1}^{n-1} {(k+1)\cdot k!- k!} = 1+\sum_{k=1}^{n-1} {(k+1)!- k!} = n!</math> | Note that <math>1+\sum_{k=1}^{n-1} {k\cdot k!} = 1+\sum_{k=1}^{n-1} {(k+1)\cdot k!- k!} = 1+\sum_{k=1}^{n-1} {(k+1)!- k!} = n!</math> | ||
Line 36: | Line 38: | ||
</math> | </math> | ||
+ | === Solution 2 (less formality) === | ||
+ | Let <math>S = 16!-32!+\cdots-1984!+2000!</math>. Note that since <math>|S - 2000!| << 2000!</math> (or <math>|S - 2000!| = 1984! + \cdots</math> is significantly smaller than <math>2000!</math>), it follows that <math>1999! < S < 2000!</math>. Hence <math>f_{2000} = 0</math>. Then <math>2000! = 2000 \cdot 1999! = 1999 \cdot 1999! + 1999!</math>, and as <math>S - 2000! << 1999!</math>, it follows that <math>1999 \cdot 1999! < S < 2000 \cdot 1999!</math>. Hence <math>f_{1999} = 1999</math>, and we now need to find the factorial base expansion of | ||
+ | |||
+ | <cmath>S_2 = S - 1999 \cdot 1999! = 1999! - 1984! + 1962! - 1946! + \cdots + 16!</cmath> | ||
+ | |||
+ | Since <math>|S_2 - 1999!| << 1999!</math>, we can repeat the above argument recursively to yield <math>f_{1998} = 1998</math>, and so forth down to <math>f_{1985} = 1985</math>. Now <math>S_{16} = 1985! - 1984! + 1962! + \cdots = 1984 \cdot 1984! + 1962! + \cdots</math>, so <math>f_{1984} = 1984</math>. | ||
+ | |||
+ | The remaining sum is now just <math>1962! - 1946! + \cdots + 16!</math>. We can repeatedly apply the argument from the previous two paragraphs to find that <math>f_{16} = 1</math>, and <math>f_k=k</math> if <math>32m\le k \le 32m+15</math> for some <math>m=1,2,\ldots,62</math>, and <math>f_k = 0</math> for all other <math>k</math>. | ||
+ | |||
+ | Now for each <math>m</math>, we have <math>-f_{32m} + f_{32m+1} - f_{32m+2} + \cdots + f_{32m + 31}</math> <math> = -32m + (32m + 1) - (32m + 2) + \cdots - (32m - 30) + (32 m + 31)</math> <math>= 1 + 1 + \cdots + 1 + 1</math> <math>= 8</math>. Thus, our answer is <math>-f_{16} + 8 \cdot 62 = \boxed{495}</math>. | ||
+ | |||
+ | == See also == | ||
{{AIME box|year=2000|n=II|num-b=13|num-a=15}} | {{AIME box|year=2000|n=II|num-b=13|num-a=15}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] |
Revision as of 12:25, 30 August 2008
Problem
Every positive integer has a unique factorial base expansion , meaning that , where each is an integer, , and . Given that is the factorial base expansion of , find the value of .
Solution
Solution 1
Note that
Thus for all ,
So now,
$\begin{align*} 16!-32!+48!-64!+\cdots+1968!-1984!+2000!&=16!+(48!-32!)+(80!-64!)\cdots+(2000!-1984!)\\ &=16! +\sum_{m=1}^{62}(32m+16)!-(32m)!\\ &=16! +\sum_{m=1}^{62}\sum_{k=32m}^{32m+15}k\cdot k! \end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Therefore we have , if for some , and for all other .
Therefore we have:
$\begin{align*} f_1-f_2+f_3-f_4+\cdots+(-1)^{j+1}f_j &= (-1)^{17}\cdot 1 + \sum_{m=1}^{62}\sum_{k=32m}^{32m+15}(-1)^{k+1}k\\ &= -1 + \sum_{m=1}^{62}\left[\sum_{j=16m}^{16m+7}(-1)^{2j+1}2j+\sum_{j=16m}^{16m+7}(-1)^{2j+2}(2j+1)\right]\\ &= -1 + \sum_{m=1}^{62}\sum_{j=16m}^{16m+7}[(-1)^{2j+1}2j+(-1)^{2j+2}(2j+1)]\\ &= -1 + \sum_{m=1}^{62}\sum_{j=16m}^{16m+7}[-2j+(2j+1)]\\ &= -1 + \sum_{m=1}^{62}\sum_{j=16m}^{16m+7}1\\ &= -1 + \sum_{m=1}^{62}8\\ &= -1 + 8\cdot 62\\ &= \boxed{495} \end{align*}$ (Error compiling LaTeX. Unknown error_msg)
Solution 2 (less formality)
Let . Note that since (or is significantly smaller than ), it follows that . Hence . Then , and as , it follows that . Hence , and we now need to find the factorial base expansion of
Since , we can repeat the above argument recursively to yield , and so forth down to . Now , so .
The remaining sum is now just . We can repeatedly apply the argument from the previous two paragraphs to find that , and if for some , and for all other .
Now for each , we have . Thus, our answer is .
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |