Difference between revisions of "1992 AIME Problems/Problem 13"
m |
FibonacciFan (talk | contribs) m (→Solution) |
||
Line 6: | Line 6: | ||
Applying the [[distance formula]], we see that <math>\frac{ \sqrt{a^2 + b^2} }{ \sqrt{ (a-9)^2 + b^2 } } = \frac{40}{41}</math>. | Applying the [[distance formula]], we see that <math>\frac{ \sqrt{a^2 + b^2} }{ \sqrt{ (a-9)^2 + b^2 } } = \frac{40}{41}</math>. | ||
− | We want to maximize <math>b</math>, the height, with <math>9</math> being the base. Simplifying gives <math>-a^2 -\frac{3200}{9}a +1600 = b^2</math>. To maximize <math>b</math>, we want to maximize <math>b^2</math>. So if we can write: <math>-(a+n)^2+m=b^2</math> then <math>m</math> is the maximum value for <math>b^2</math>. This follows directly from the [[trivial inequality]], because if <math>{x^2 \ge 0}</math> then plugging in <math>a+n</math> for <math>x</math> gives us <math>{(a+n)^2 \ge 0}</math>. So we can keep increasing the left hand side of our earlier equation until <math>{(a+n)^2 = 0}</math>. We can factor <math>-a^2 -\frac{3200}{9}a +1600 = b^2</math> into <math>-(a +\frac{1600}{9})^2 +1600+(\frac{ | + | We want to maximize <math>b</math>, the height, with <math>9</math> being the base. Simplifying gives <math>-a^2 -\frac{3200}{9}a +1600 = b^2</math>. To maximize <math>b</math>, we want to maximize <math>b^2</math>. So if we can write: <math>-(a+n)^2+m=b^2</math> then <math>m</math> is the maximum value for <math>b^2</math>. This follows directly from the [[trivial inequality]], because if <math>{x^2 \ge 0}</math> then plugging in <math>a+n</math> for <math>x</math> gives us <math>{(a+n)^2 \ge 0}</math>. So we can keep increasing the left hand side of our earlier equation until <math>{(a+n)^2 = 0}</math>. We can factor <math>-a^2 -\frac{3200}{9}a +1600 = b^2</math> into <math>-(a +\frac{1600}{9})^2 +1600+(\frac{1600}{9})^2 = b^2</math>. We find <math>b</math>, and plug into <math>9\cdot\frac{1}{2} \cdot b</math>. Thus, the area is <math>9\cdot\frac{1}{2} \cdot \frac{40*41}{9} = 820</math>. |
== See also == | == See also == |
Revision as of 23:25, 24 August 2008
Problem
Triangle has and . What's the largest area that this triangle can have?
Solution
First, consider the triangle in a coordinate system with vertices at , , and .
Applying the distance formula, we see that . We want to maximize , the height, with being the base. Simplifying gives . To maximize , we want to maximize . So if we can write: then is the maximum value for . This follows directly from the trivial inequality, because if then plugging in for gives us . So we can keep increasing the left hand side of our earlier equation until . We can factor into . We find , and plug into . Thus, the area is .
See also
1992 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |