Difference between revisions of "2000 AIME I Problems/Problem 14"
m (minor wik) |
(easier solution, on same principles) |
||
Line 2: | Line 2: | ||
In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are [[congruent (geometry)|congruent]]. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find the greatest integer that does not exceed <math>1000r</math>. | In triangle <math>ABC,</math> it is given that angles <math>B</math> and <math>C</math> are [[congruent (geometry)|congruent]]. Points <math>P</math> and <math>Q</math> lie on <math>\overline{AC}</math> and <math>\overline{AB},</math> respectively, so that <math>AP = PQ = QB = BC.</math> Angle <math>ACB</math> is <math>r</math> times as large as angle <math>APQ,</math> where <math>r</math> is a positive real number. Find the greatest integer that does not exceed <math>1000r</math>. | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
+ | === Solution 1 === | ||
+ | <center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60); draw(A--B--C--A);draw(P--Q);draw(A--R--B);draw(P--R);D(R--C,dashed); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0)); | ||
+ | </asy></center> | ||
+ | Let point <math>R</math> be in <math>\triangle ABC</math> such that <math>QB = BR = RP</math>. Then <math>PQBR</math> is a [[rhombus]], so <math>AB \parallel PR</math> and <math>APRB</math> is an [[isosceles trapezoid]]. Since <math>\overline{PB}</math> bisects <math>\angle QBR</math>, it follows by symmetry in trapezoid <math>APRB</math> that <math>\overline{RA}</math> bisects <math>\angle BAC</math>. Thus <math>R</math> lies on the perpendicular bisector of <math>\overline{BC}</math>, and <math>BC = BR = RC</math>. Hence <math>\triangle BCR</math> is an [[equilateral triangle]]. | ||
+ | |||
+ | Now <math>\angle ABR = \angle BAC = \angle ACR</math>, and the sum of the angles in <math>\triangle ABC</math> is <math>3\angle BAC + 2 \cdot 60^{\circ} = 180^{\circ} \Longrightarrow \angle BAC = 20^{\circ}</math>. Then <math>\angle APQ = 140^{\circ}</math> and <math>\angle ACB = 80^{\circ}</math>, so the answer is <math>\left\lfloor 1000 \cdot \frac{80}{140} \right\rfloor = \left\lfloor \frac{4000}{7} \right\rfloor = \boxed{571}</math>. | ||
+ | |||
+ | === Solution 2 === | ||
<center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0));label("\(S\)",S,(-1,0)); | <center><asy>defaultpen(fontsize(8)); size(200); pair A=20*dir(80)+20*dir(60)+20*dir(100), B=(0,0), C=20*dir(0), P=20*dir(80)+20*dir(60), Q=20*dir(80), R=20*dir(60), S; S=intersectionpoint(Q--C,P--B); draw(A--B--C--A);draw(B--P--Q--C--R--Q);draw(A--R--B);draw(P--R--S); label("\(A\)",A,(0,1));label("\(B\)",B,(-1,-1));label("\(C\)",C,(1,-1));label("\(P\)",P,(1,1)); label("\(Q\)",Q,(-1,1));label("\(R\)",R,(1,0));label("\(S\)",S,(-1,0)); | ||
− | </asy></center> | + | </asy></center> |
+ | Again, construct <math>R</math> as above. | ||
+ | |||
Let <math>\angle BAC = \angle QBR = \angle QPR = 2x</math> and <math>\angle ABC = \angle ACB = y</math>, which means <math>x + y = 90</math>. | Let <math>\angle BAC = \angle QBR = \angle QPR = 2x</math> and <math>\angle ABC = \angle ACB = y</math>, which means <math>x + y = 90</math>. | ||
<math>\triangle QBC</math> is isosceles with <math>QB = BC</math>, so <math>\angle BCQ = 90 - \frac {y}{2}</math>. | <math>\triangle QBC</math> is isosceles with <math>QB = BC</math>, so <math>\angle BCQ = 90 - \frac {y}{2}</math>. | ||
Let <math>S</math> be the intersection of <math>QC</math> and <math>BR</math>. Since <math>\angle BCQ = \angle BQC = \angle BRS</math>, <math>BCRS</math> is [[cyclic quadrilateral|cyclic]], which means <math>\angle RBS = \angle RCS = x</math>. | Let <math>S</math> be the intersection of <math>QC</math> and <math>BR</math>. Since <math>\angle BCQ = \angle BQC = \angle BRS</math>, <math>BCRS</math> is [[cyclic quadrilateral|cyclic]], which means <math>\angle RBS = \angle RCS = x</math>. | ||
− | Since <math>APRB</math> is an isosceles trapezoid, <math>BP = AR</math>, but since <math>AR</math> bisects <math>\angle BAC</math>, <math>\angle ABR = \angle ACR = 2x</math>. | + | Since <math>APRB</math> is an isosceles trapezoid, <math>BP = AR</math>, but since <math>AR</math> bisects <math>\angle BAC</math>, <math>\angle ABR = \angle ACR = 2x</math>. |
Therefore we have that <math>\angle ACB = \angle ACR + \angle RCS + \angle QCB = 2x + x + 90 - \frac {y}{2} = y</math>. | Therefore we have that <math>\angle ACB = \angle ACR + \angle RCS + \angle QCB = 2x + x + 90 - \frac {y}{2} = y</math>. | ||
We solve the simultaneous equations <math>x + y = 90</math> and <math>2x + x + 90 - \frac {y}{2} = y</math> to get <math>x = 10</math> and <math>y = 80</math>. | We solve the simultaneous equations <math>x + y = 90</math> and <math>2x + x + 90 - \frac {y}{2} = y</math> to get <math>x = 10</math> and <math>y = 80</math>. | ||
<math>\angle APQ = 180 - 4x = 140</math>, <math>\angle ACB = 80</math>, so <math>r = \frac {80}{140} = \frac {4}{7}</math>. | <math>\angle APQ = 180 - 4x = 140</math>, <math>\angle ACB = 80</math>, so <math>r = \frac {80}{140} = \frac {4}{7}</math>. | ||
− | <math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}</math> | + | <math>\left\lfloor 1000\left(\frac {4}{7}\right)\right\rfloor = \boxed{571}</math>. |
== See also == | == See also == |
Revision as of 16:35, 14 August 2008
Problem
In triangle it is given that angles and are congruent. Points and lie on and respectively, so that Angle is times as large as angle where is a positive real number. Find the greatest integer that does not exceed .
Solution
Solution 1
Let point be in such that . Then is a rhombus, so and is an isosceles trapezoid. Since bisects , it follows by symmetry in trapezoid that bisects . Thus lies on the perpendicular bisector of , and . Hence is an equilateral triangle.
Now , and the sum of the angles in is . Then and , so the answer is .
Solution 2
Again, construct as above.
Let and , which means . is isosceles with , so . Let be the intersection of and . Since , is cyclic, which means . Since is an isosceles trapezoid, , but since bisects , .
Therefore we have that . We solve the simultaneous equations and to get and . , , so . .
See also
2000 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |