Difference between revisions of "2003 AIME II Problems/Problem 6"
m |
|||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | {{ | + | |
+ | Since a <math>13-14-15</math> triangle is a <math>5-12-13</math> triangle and a <math>9-12-15</math> triangle "glued" together on the <math>12</math> side, <math>[ABC]=\frac{1}{2}\cdot12\cdot14=84</math>. | ||
+ | |||
+ | There are six points of intersection between <math>\Delta ABC</math> and <math>\Delta A'B'C'</math>. Connect each of these points to <math>G</math>. | ||
+ | |||
+ | <asy> | ||
+ | size(8cm); | ||
+ | pair A,B,C,G,D,E,F,A_1,A_2,B_1,B_2,C_1,C_2; | ||
+ | B=(0,0); | ||
+ | A=(5,12); | ||
+ | C=(14,0); | ||
+ | E=(12.6667,8); | ||
+ | D=(7.6667,-4); | ||
+ | F=(-1.3333,8); | ||
+ | G=(6.3333,4); | ||
+ | B_1=(4.6667,0); | ||
+ | B_2=(1.6667,4); | ||
+ | A_1=(3.3333,8); | ||
+ | A_2=(8,8); | ||
+ | C_1=(11,4); | ||
+ | C_2=(9.3333,0); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(G); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | dot(A_1); | ||
+ | dot(B_1); | ||
+ | dot(C_1); | ||
+ | dot(A_2); | ||
+ | dot(B_2); | ||
+ | dot(C_2); | ||
+ | draw(B--A--C--cycle); | ||
+ | draw(E--D--F--cycle); | ||
+ | draw(B_1--A_2); | ||
+ | draw(A_1--C_2); | ||
+ | draw(C_1--B_2); | ||
+ | label("$B$",B,WSW); | ||
+ | label("$A$",A,N); | ||
+ | label("$C$",C,ESE); | ||
+ | label("$G$",G,S); | ||
+ | label("$B'$",E,ENE); | ||
+ | label("$A'$",D,S); | ||
+ | label("$C'$",F,WNW); | ||
+ | </asy> | ||
+ | |||
+ | There are <math>12</math> smaller congruent triangles which make up the desired area. Also, <math>\Delta ABC</math> is made up of <math>9</math> of such triangles. | ||
+ | Therefore, <math>\left[\Delta ABC \bigcup \Delta A'B'C'\right] = \frac{12}{9}[\Delta ABC]= \frac{4}{3}\cdot84=\boxed{112}</math>. | ||
== See also == | == See also == | ||
{{AIME box|year=2003|n=II|num-b=5|num-a=7}} | {{AIME box|year=2003|n=II|num-b=5|num-a=7}} |
Revision as of 18:28, 26 July 2008
Problem
In triangle and point is the intersection of the medians. Points and are the images of and respectively, after a rotation about What is the area if the union of the two regions enclosed by the triangles and
Solution
Since a triangle is a triangle and a triangle "glued" together on the side, .
There are six points of intersection between and . Connect each of these points to .
There are smaller congruent triangles which make up the desired area. Also, is made up of of such triangles. Therefore, .
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |