Difference between revisions of "2005 AIME II Problems/Problem 14"
(solution / asy) |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In triangle <math> ABC, AB=13, BC=15, </math> and <math>CA = 14. </math> Point <math> D </math> is on <math> \overline{BC} </math> with <math> CD=6. </math> Point <math> E </math> is on <math> \overline{BC} </math> such that <math> \angle BAE\cong \angle CAD. </math> Given that <math> BE=\frac pq </math> where <math> p </math> and <math> q </math> are relatively prime positive integers, find <math> q. </math> | + | In [[triangle]] <math> ABC, AB=13, BC=15, </math> and <math>CA = 14. </math> Point <math> D </math> is on <math> \overline{BC} </math> with <math> CD=6. </math> Point <math> E </math> is on <math> \overline{BC} </math> such that <math> \angle BAE\cong \angle CAD. </math> Given that <math> BE=\frac pq </math> where <math> p </math> and <math> q </math> are relatively prime positive integers, find <math> q. </math> |
== Solution == | == Solution == | ||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black + linewidth(0.7); pen f = fontsize(10); | ||
+ | pair C = (0,0), B=(15,0), A=IP(CR(B,13), CR(C,14)), D=(6,0), E = (4410/463,0); | ||
+ | D(MP("A",A,N,f)--MP("B",B,f)--MP("C",C,f)--A--MP("D",D,f)--A--MP("E",E,f)); | ||
+ | MP("6",(D+C)/2,f);MP("13",(A+B)/2,NE,f);MP("14",(A+C)/2,NW,f);MP("9",(D+B)/2,N,f); | ||
+ | D(anglemark(C,A,D,50)); D(anglemark(E,A,B,50)); | ||
+ | </asy></center> | ||
− | + | By the [[Law of Sines]] and since <math>\angle BAE = \angle CAD, \angle BAD = \angle CAE</math>, we have | |
− | == | + | <center><math>\begin{align*} |
+ | \frac{CD \cdot CE}{AC^2} &= \frac{\sin CAD}{\sin ADC} \cdot \frac{\sin CAE}{\sin AEC} | ||
+ | = \frac{\sin BAE \sin BAD}{\sin ADB \sin AEB} | ||
+ | = \frac{\sin BAE}{\sin AEB} \cdot \frac{\sin BAD}{\sin ADB}\\ &= \frac{BE \cdot BD}{AB^2} | ||
+ | \end{align*} | ||
+ | </math></center> | ||
− | {{ | + | Substituting our knowns, we have <math>\frac{CE}{BE} = \frac{3 \cdot 14^2}{2 \cdot 13^2} = \frac{BC - BE}{BE} = \frac{15}{BE} - 1 \Longrightarrow BE = \frac{13^2 \cdot 15}{463}</math>. The answer is <math>q = \boxed{463}</math>. |
+ | == See also == | ||
+ | {{AIME box|year=2005|n=II|num-b=13|num-a=15|t=368562}} | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 17:18, 25 July 2008
Problem
In triangle and
Point
is on
with
Point
is on
such that
Given that
where
and
are relatively prime positive integers, find
Solution
![[asy] pointpen = black; pathpen = black + linewidth(0.7); pen f = fontsize(10); pair C = (0,0), B=(15,0), A=IP(CR(B,13), CR(C,14)), D=(6,0), E = (4410/463,0); D(MP("A",A,N,f)--MP("B",B,f)--MP("C",C,f)--A--MP("D",D,f)--A--MP("E",E,f)); MP("6",(D+C)/2,f);MP("13",(A+B)/2,NE,f);MP("14",(A+C)/2,NW,f);MP("9",(D+B)/2,N,f); D(anglemark(C,A,D,50)); D(anglemark(E,A,B,50)); [/asy]](http://latex.artofproblemsolving.com/5/e/b/5eb6a853aed7859b36cd02006f4f16fa5f383ea2.png)
By the Law of Sines and since , we have
\frac{CD \cdot CE}{AC^2} &= \frac{\sin CAD}{\sin ADC} \cdot \frac{\sin CAE}{\sin AEC}
= \frac{\sin BAE \sin BAD}{\sin ADB \sin AEB} = \frac{\sin BAE}{\sin AEB} \cdot \frac{\sin BAD}{\sin ADB}\\ &= \frac{BE \cdot BD}{AB^2}
\end{align*}$ (Error compiling LaTeX. Unknown error_msg)Substituting our knowns, we have . The answer is
.
See also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |