Difference between revisions of "2000 AMC 12 Problems/Problem 6"

(Solution)
(Solution)
Line 29: Line 29:
 
The only answer choice on this list is <math> 119 \Rightarrow C </math>
 
The only answer choice on this list is <math> 119 \Rightarrow C </math>
  
Note: once we apply the factoring trick we see that, since <math>p-1</math> and <math>q-1</math> are even, <math>K+1</math> should be a multiple of <math>4</math>. These means none of the other given answers are possible. Then <math>(p-1) \cdot (q-1)</math> could be <math>2 \cdot 60,4 \cdot 30,6 \cdot 20</math> or <math>10 \cdot 12.</math> Of these, three have <math>p</math> and <math>q</math> prime but only the last has them both small enough.
+
Note: once we apply the factoring trick we see that, since <math>p-1</math> and <math>q-1</math> are even, <math>K+1</math> should be a multiple of <math>4</math>.  
 +
 
 +
These means that only <math> 119 \Rightarrow C </math> and <math>231 \rightarrow E</math> are possible.
 +
 
 +
We can't have <math>(p-1) \cdot (q-1)=232=2^3\cdot 29</math> with <math>p</math> and <math>q</math> below <math>18</math> (why?).
 +
 
 +
But <math>(p-1) \cdot (q-1)=120=2^3\cdot 3 \cdot 5</math> could be <math>2 \cdot 60,4 \cdot 30,6 \cdot 20</math> or <math>10 \cdot 12.</math> Of these, three have <math>p</math> and <math>q</math> prime but only the last has them both small enough.
  
 
== See also ==
 
== See also ==

Revision as of 02:35, 22 July 2008

Problem

Two different prime numbers between $4$ and $18$ are chosen. When their sum is subtracted from their product, which of the following numbers could be obtained?

$\mathrm{(A) \ 21 } \qquad \mathrm{(B) \ 60 } \qquad \mathrm{(C) \ 119 } \qquad \mathrm{(D) \ 180 } \qquad \mathrm{(E) \ 231 }$

Solution

Let the primes be $p$ and $q$.

The problem asks us for possible values of $K$ where $K=pq-p-q$

Using Simon's Favorite Factoring Trick:

$K+1=pq-p-q+1$

$K+1=(p-1)(q-1)$

Possible values of $(p-1)$ and $(q-1)$ are:

$4,6,10,12,16$

The possible values for $K+1$ (formed by multipling two distinct values for $(p-1)$ and $(q-1)$) are:

$24,40,48,60,64,72,96,120,160,192$

So the possible values of $K$ are:

$23,39,47,59,63,71,95,119,159,191$

The only answer choice on this list is $119 \Rightarrow C$

Note: once we apply the factoring trick we see that, since $p-1$ and $q-1$ are even, $K+1$ should be a multiple of $4$.

These means that only $119 \Rightarrow C$ and $231 \rightarrow E$ are possible.

We can't have $(p-1) \cdot (q-1)=232=2^3\cdot 29$ with $p$ and $q$ below $18$ (why?).

But $(p-1) \cdot (q-1)=120=2^3\cdot 3 \cdot 5$ could be $2 \cdot 60,4 \cdot 30,6 \cdot 20$ or $10 \cdot 12.$ Of these, three have $p$ and $q$ prime but only the last has them both small enough.

See also

2000 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions