Difference between revisions of "2007 USAMO Problems/Problem 6"
(→Solution) |
|||
Line 10: | Line 10: | ||
== Solution == | == Solution == | ||
− | + | <center><asy> | |
+ | size(400); | ||
+ | defaultpen(fontsize(8)); | ||
+ | pair A=(2,8), B=(0,0), C=(13,0), I=incenter(A,B,C), O=circumcenter(A,B,C), p_a, q_a, X, Y, X1, Y1, D, E, F; | ||
+ | real r=abs(I-foot(I,A,B)), R=abs(A-O), a=abs(B-C), b=abs(A-C), c=abs(A-B), x=(((b+c-a)/2)^2)/(r^2+4*r*R+((b+c-a)/2)^2), y=((b+c-a)/2)^2/(r^2+((b+c-a)/2)^2); | ||
+ | p_a=x*(O-A)+A; | ||
+ | q_a=y*(O-A)+A; | ||
+ | X=intersectionpoint(Circle(p_a,x*abs(O-A)), A+(O-A)*0.01--O); | ||
+ | X1=intersectionpoint(intersectionpoint(incircle(A,B,C),I--I+O-A)+abs(A-O)*expi(angle(A-O)-pi/2)--intersectionpoint(incircle(A,B,C),I--I+O-A)-abs(A-O)*expi(angle(A-O)-pi/2), q_a--q_a+O-A); | ||
+ | Y=intersectionpoint(Circle(q_a,y*abs(O-A)), O--2*O-A); | ||
+ | Y1=intersectionpoint(intersectionpoint(incircle(A,B,C),I--I+A-O)+abs(A-O)*expi(angle(A-O)-pi/2)--intersectionpoint(incircle(A,B,C),I--I+A-O)-abs(A-O)*expi(angle(A-O)-pi/2), O--A); | ||
+ | draw(intersectionpoint(incircle(A,B,C),I--I+A-O)+abs(A-O)*expi(angle(A-O)-pi/2)--intersectionpoint(incircle(A,B,C),I--I+A-O)-abs(A-O)*expi(angle(A-O)-pi/2),blue+0.7); | ||
+ | draw(intersectionpoint(incircle(A,B,C),I--I+O-A)+abs(A-O)*expi(angle(A-O)-pi/2)--intersectionpoint(incircle(A,B,C),I--I+O-A)-0.5*abs(A-O)*expi(angle(A-O)-pi/2),red+0.7); | ||
+ | draw(A--B--C--A); | ||
+ | draw(Circle(A,abs(foot(I,A,B)-A))); | ||
+ | draw(incircle(A,B,C)); | ||
+ | draw(I--A--O--Y); | ||
+ | draw(Circle(p_a,x*abs(O-A)),red+0.7); | ||
+ | draw(Circle(q_a,y*abs(O-A)),blue+0.7); | ||
+ | label("$A$",A,(-1,1)); | ||
+ | label("$I$",I,(-1,0));label("$O$",O,(-1,-1)); | ||
+ | label("$P_A$",p_a,(0.5,1));label("$Q_A$",q_a,(1,0)); | ||
+ | label("$X$",X,(1,0));label("$Y$",Y,(1,-1)); | ||
+ | label("$X'$",X1,(1,0));label("$Y'$",Y1,(0,1)); | ||
+ | label("$\omega$",I+r*expi(pi/12), (1,0)); | ||
+ | label("$\omega_A$",p_a+x*abs(O-A)*expi(pi/6), (1,1)); | ||
+ | label("$\Omega_A$",q_a+y*abs(O-A)*expi(pi/6), (1,0)); | ||
+ | label("$\Omega_A'$",intersectionpoint(incircle(A,B,C),I--I+A-O)-abs(A-O)*expi(angle(A-O)-pi/2), (0,2)); | ||
+ | label("$\omega_A'$",intersectionpoint(incircle(A,B,C),I--I+O-A)-0.5*abs(A-O)*expi(angle(A-O)-pi/2), (0,2)); | ||
+ | dot(p_a^^q_a^^A^^I^^O^^X^^Y^^X1^^Y1); | ||
+ | </asy></center> | ||
'''Lemma''': | '''Lemma''': | ||
− | <math> | + | <center><math> |
P_{A}Q_{A}=\frac{ 4R^{2}(s-a)^{2}(s-b)(s-c)}{rb^{2}c^{2}} | P_{A}Q_{A}=\frac{ 4R^{2}(s-a)^{2}(s-b)(s-c)}{rb^{2}c^{2}} | ||
− | </math> | + | </math></center> |
'''Proof''': | '''Proof''': | ||
Line 22: | Line 52: | ||
Note <math>P_{A}</math> and <math>Q_{A}</math> lie on <math>AO</math> since for a pair of tangent circles, the point of tangency and the two centers are [[collinear]]. | Note <math>P_{A}</math> and <math>Q_{A}</math> lie on <math>AO</math> since for a pair of tangent circles, the point of tangency and the two centers are [[collinear]]. | ||
− | Let <math> | + | Let <math>\omega</math> touch <math>BC</math>, <math>CA</math>, and <math>AB</math> at <math>D</math>, <math>E</math>, and <math>F</math>, respectively. Note <math>AE=AF=s-a</math>. Consider an [[inversion]], <math>\mathcal{I}</math>, centered at <math>A</math>, passing through <math>E</math>, <math>F</math>. Since <math>IE\perp AE</math>, <math>\omega</math> is [[orthogonal]] to the inversion circle, so <math>\mathcal{I}(\omega)=\omega</math>. Consider <math>\mathcal{I}(\omega_{A})=\omega_{A}'</math>. Note that <math>\omega_{A}</math> passes through <math>A</math> and is tangent to <math>\omega_{A}</math>, hence <math>\omega_{A}'</math> is a line that is tangent to <math>\omega</math>. Furthermore, <math>\omega_{A}'\perp AO</math> because <math>\omega_{A}</math> is symmetric about <math>OA</math>, so the inversion preserves that reflective symmetry. Since it is a line that is symmetric about <math>AO</math>, it must be perpendicular to <math>AO</math>. Likewise, <math>\mathcal{I}(\Omega_{A})=\Omega_{A}'</math> is the other line tangent to <math>\omega</math> and [[perpendicular]] to <math>AO</math>. |
+ | Let <math>\omega_{A} \cap AO=X</math> and <math>\omega_{A}' \cap AO=X'</math> (second intersection). | ||
− | + | Let <math>\Omega_{A} \cap AO=Y</math> and <math>\Omega_{A}' \cap AO=Y'</math> (second intersection). | |
− | |||
− | |||
Evidently, <math>AX=2AP_{A}</math> and <math>AY=2AQ_{A}</math>. We want: | Evidently, <math>AX=2AP_{A}</math> and <math>AY=2AQ_{A}</math>. We want: | ||
Line 35: | Line 64: | ||
</math></div> | </math></div> | ||
− | by inversion. Note that <math> | + | by inversion. Note that <math>\omega_{A}' || \Omega_{A}'</math>, and they are tangent to <math>\omega</math>, so the [[distance]] between those lines is <math>2r=AX'-AY'</math>. Drop a perpendicular from <math>I</math> to <math>AO</math>, touching at <math>H</math>. Then <math>AH=AI\cos\angle OAI=AI\cos\frac{1}{2}|\angle B-\angle C|</math>. Then <math>AX'</math>, <math>AY'</math>=<math>AI\cos\frac{1}{2}|\angle B-\angle C|\pm r</math>. So <math>AX'*AY'=AI^{2}\cos^{2}\frac{1}{2}|\angle B-\angle C|-r^{2}</math> |
<div style='text-align:center;'><math> | <div style='text-align:center;'><math> | ||
Line 44: | Line 73: | ||
<div style='text-align:center;'><math> | <div style='text-align:center;'><math> | ||
− | \star= \frac{ \frac{(s-a)^{2}}{r}}{ \frac{1+\cos \angle B-\angle C}{1-\cos A}+1 }=\frac{ \frac{(s-a)^{2}}{r}*(1-\cos \angle A) }{ \cos \angle B-\angle C+\cos \pi-\angle B-\angle C } | + | \star= \frac{ \frac{(s-a)^{2}}{r}}{ \frac{1+\cos (\angle B-\angle C)}{1-\cos A}+1 }=\frac{ \frac{(s-a)^{2}}{r}*(1-\cos \angle A) }{ \cos(\angle B-\angle C)+\cos(\pi-\angle B-\angle C)} |
</math> | </math> | ||
Revision as of 21:45, 5 July 2008
Problem
Let be an acute triangle with , , and being its incircle, circumcircle, and circumradius, respectively. Circle is tangent internally to at and tangent externally to . Circle is tangent internally to at and tangent internally to . Let and denote the centers of and , respectively. Define points , , , analogously. Prove that
with equality if and only if triangle is equilateral.
Solution
Lemma:
Proof:
Note and lie on since for a pair of tangent circles, the point of tangency and the two centers are collinear.
Let touch , , and at , , and , respectively. Note . Consider an inversion, , centered at , passing through , . Since , is orthogonal to the inversion circle, so . Consider . Note that passes through and is tangent to , hence is a line that is tangent to . Furthermore, because is symmetric about , so the inversion preserves that reflective symmetry. Since it is a line that is symmetric about , it must be perpendicular to . Likewise, is the other line tangent to and perpendicular to .
Let and (second intersection).
Let and (second intersection).
Evidently, and . We want:
by inversion. Note that , and they are tangent to , so the distance between those lines is . Drop a perpendicular from to , touching at . Then . Then , =. So
Note that . Applying the double angle formulas and , we get
End Lemma
The problem becomes:
which is true because , equality is when the circumcenter and incenter coincide. As before, , so, by symmetry, . Hence the inequality is true iff is equilateral.
Comment: It is much easier to determine by considering . We have , , , and . However, the inversion is always nice to use. This also gives an easy construction for because the tangency point is collinear with the intersection of and .
See also
2007 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |