Difference between revisions of "1995 AIME Problems/Problem 4"
m (<asy> messing up?) |
(solution) |
||
Line 3: | Line 3: | ||
<center><asy> | <center><asy> | ||
− | size( | + | pointpen = black; pathpen = black + linewidth(0.7); size(150); |
− | pair A=(0,0), B=(3,0), C=(- | + | pair A=(0,0), B=(6,0), C=(-3,0), D=C+6*expi(acos(1/3)), F=B+3*expi(acos(1/3)), P=IP(F--F+3*(D-F),CR(A,9)), Q=IP(F--F+3*(F-D),CR(A,9)); |
− | + | D(CR(A,9)); D(CR(B,3)); D(CR(C,6)); D(P--Q); | |
− | |||
− | |||
</asy></center> | </asy></center> | ||
== Solution == | == Solution == | ||
+ | We label the points as following: the centers of the circles of radii <math>3,6,9</math> are <math>O_3,O_6,O_9</math> respectively, and the endpoints of the chord are <math>P,Q</math>. Let <math>A_3,A_6,A_9</math> be the feet of the [[perpendicular]]s from <math>O_3,O_6,O_9</math> to <math>\overline{PQ}</math> (so <math>A_3,A_6</math> are the points of [[tangent (geometry)|tangency]]). Then we note that <math>\overline{O_3A_3} \parallel \overline{O_6A_6} \parallel \overline{O_9A_9}</math>, and <math>O_6O_9 : O_9O_3 = 3:6 = 1:2</math>. Thus, <math>O_9A_9 = \frac{1 \cdot O_6A_6 + 2 \cdot O_3A_3}{3} = 5</math> (consider similar triangles). Applying the [[Pythagorean Theorem]] to <math>\triangle O_9A_9P</math>, we find that | ||
+ | <cmath>PQ^2 = 4(O_9P)^2 = 4[(O_9P)^2-(O_9A_9)^2] = 4[9^2-5^2] = \boxed{224}</cmath> | ||
<center><asy> | <center><asy> | ||
− | size( | + | pointpen = black; pathpen = black + linewidth(0.7); size(150); |
− | pair A=(0,0), B=(3,0), C=(- | + | pair A=(0,0), B=(6,0), C=(-3,0), D=C+6*expi(acos(1/3)), F=B+3*expi(acos(1/3)),G=5*expi(acos(1/3)), P=IP(F--F+3*(D-F),CR(A,9)), Q=IP(F--F+3*(F-D),CR(A,9)); |
− | + | D(CR(D(MP("O_9",A)),9)); D(CR(D(MP("O_3",B)),3)); D(CR(D(MP("O_6",C)),6)); D(MP("P",P,NW)--MP("Q",Q,NE)); D((-9,0)--(9,0)); | |
− | + | D(A--MP("A_9",G,N)); D(B--MP("A_3",F,N)); D(C--MP("A_6",D,N)); D(A--P); D(rightanglemark(A,G,P,12)); | |
− | |||
</asy></center> | </asy></center> | ||
Revision as of 09:46, 18 June 2008
Problem
Circles of radius and are externally tangent to each other and are internally tangent to a circle of radius . The circle of radius has a chord that is a common external tangent of the other two circles. Find the square of the length of this chord.
Solution
We label the points as following: the centers of the circles of radii are respectively, and the endpoints of the chord are . Let be the feet of the perpendiculars from to (so are the points of tangency). Then we note that , and . Thus, (consider similar triangles). Applying the Pythagorean Theorem to , we find that
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |