Difference between revisions of "User:Temperal/Inequalities"
(rmv solution) |
|||
Line 3: | Line 3: | ||
\left(\sum_{sym}\frac {x}{y}\right)\left(\sqrt {2x^2 + 2y^2 + 2z^2}\right)\ge 1 | \left(\sum_{sym}\frac {x}{y}\right)\left(\sqrt {2x^2 + 2y^2 + 2z^2}\right)\ge 1 | ||
</cmath> | </cmath> | ||
+ | |||
+ | |||
+ | '''Solution (Altheman):''' By [[AM-GM]], <math>\sum_{sym}\ge 6</math>, and my [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality|RMS-AM]] <math>\sqrt {2x^2 + 2y^2 + 2z^2}\ge 1</math>, thus the inequality is true. | ||
+ | |||
+ | '''Solution (me):''' By [[Jensen's Inequality]], <math>\sum_{sym}\ge \frac{1}{\sum\limits_{sym}x\sqrt{y}}</math> and by the [[Cauchy-Schwarz Inequality]], <math>\frac{1}{\sum\limits_{sym}x\sqrt{y}}\ge\frac{1}{\sqrt{(2x^2 + 2y^2 + 2z^2)(2x+2y+2z)}}=\frac{1}{\sqrt{2x^2 + 2y^2 + 2z^2}}</math> |
Latest revision as of 12:01, 11 June 2008
Problem (me): Prove for that
Solution (Altheman): By AM-GM, , and my RMS-AM , thus the inequality is true.
Solution (me): By Jensen's Inequality, and by the Cauchy-Schwarz Inequality,