Difference between revisions of "Sequence"

(Convergence)
m (Convergence)
Line 7: Line 7:
 
Intuitively, a sequence '''converges''' if its terms approach a particular number.
 
Intuitively, a sequence '''converges''' if its terms approach a particular number.
  
Formally, a sequence <math>(x_n)</math> of reals to <math>L \in \mathbb{R}</math> if and only if for all positive reals <math>\epsilon</math>, there exists a positive integer <math>k</math> such that for all integers <math>n \ge k</math>, we have <math>|x_n - L| < \epsilon</math>. If <math>(x_n)</math> converges to <math>L</math>, <math>L</math> is called the [[limit]] of <math>(x_n)</math> and is written <math>\lim_{n \to \infty} x_n</math>.
+
Formally, a sequence <math>(x_n)</math> of reals converges to <math>L \in \mathbb{R}</math> if and only if for all positive reals <math>\epsilon</math>, there exists a positive integer <math>k</math> such that for all integers <math>n \ge k</math>, we have <math>|x_n - L| < \epsilon</math>. If <math>(x_n)</math> converges to <math>L</math>, <math>L</math> is called the [[limit]] of <math>(x_n)</math> and is written <math>\lim_{n \to \infty} x_n</math>.
  
 
== Resources ==
 
== Resources ==

Revision as of 12:01, 18 May 2008

A sequence is an ordered list of terms. Sequences may be either finite or infinite.

Definition

A sequence of real numbers is simply a function $f : \mathbb{N} \rightarrow \mathbb{R}$. For instance, the function $f(x) = x^2$ defined on $\mathbb{N}$ corresponds to the sequence $X = (x_n) = (0, 1, 4, 9, 16, \ldots)$.

Convergence

Intuitively, a sequence converges if its terms approach a particular number.

Formally, a sequence $(x_n)$ of reals converges to $L \in \mathbb{R}$ if and only if for all positive reals $\epsilon$, there exists a positive integer $k$ such that for all integers $n \ge k$, we have $|x_n - L| < \epsilon$. If $(x_n)$ converges to $L$, $L$ is called the limit of $(x_n)$ and is written $\lim_{n \to \infty} x_n$.

Resources

See Also

This article is a stub. Help us out by expanding it.