Difference between revisions of "Monoid"
m |
m (→Monoid Operating on a Set) |
||
Line 27: | Line 27: | ||
* <math>ex = x</math>; | * <math>ex = x</math>; | ||
* <math>(ab)x = a(bx)</math>. | * <math>(ab)x = a(bx)</math>. | ||
− | + | We may also identify the function <math>f_a</math> with <math>a</math>, thus writing <math>a(x)</math> instead of <math>f_a(x)</math>. | |
{{stub}} | {{stub}} | ||
[[Category:Abstract algebra]] | [[Category:Abstract algebra]] |
Revision as of 18:47, 14 May 2008
A monoid is a set closed under an operation
which is defined everywhere on
, is associative, and has an identity in
. That is,
is a monoid if and only if
- There is a well-defined element
of
, for all
;
for all
;
- There is an element
such that
for all
.
Alternatively, a monoid can be thought of as a group without inverses, or as an associative magma with an identity.
By abuse of notation, we often identity a monoid with its underlying set. That is, we often refer to a monoid simply as the monoid
, when there is no risk of confusion.
Because the conditions on monoids are so weak, there are very few theorems of "monoid theory." However, monoids do arise from time to time in the study of abstract algebra, and many objects (such as all groups, as well as any ring with respect to either of its operations) are in fact monoids.
Monoid Operating on a Set
Let be a monoid whose law of composition is written multiplicatively and whose identity is
, and let
be a set. Let
be the set of functions on
. We call a mapping
from
to
a left operation of
on
if
is the identity map on
and for all
in
,
(A right operation is defined similarly, except that
.)
In other words, a left operation of
on
is a homomorphism from the monoid
to the monoid
; a right operation is a homomorphism into the opposite monoid of
.
We may also say that acts on
. A set
with an action of a monoid
on
is called an
-set.
We say that a monoid's action on is faithful if the mapping
is injective, for all elements
of the monoid.
Every monoid acts on the set of its elements.
Often one speaks of groups acting on sets. Since elements groups must have unique inverses, for every in a group
acting on a set
, the function
must be a bijection.
If is an element of
, and
is an element of a monoid
with a left operation on
, we often write
simply as
, when there is no risk of confusion. Then we may rewrite our criteria thus, for
in
and
in
.
;
.
We may also identify the function with
, thus writing
instead of
.
This article is a stub. Help us out by expanding it.