Difference between revisions of "2005 Canadian MO Problems/Problem 4"

(incomplete)
(A better incomplete solution.)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
 
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>.
 
Let <math>ABC</math> be a triangle with circumradius <math>R</math>, perimeter <math>P</math> and area <math>K</math>. Determine the maximum value of <math>KP/R^3</math>.
  
 
==Solution==
 
==Solution==
 +
Let the sides of triangle <math>ABC</math> be <math>a</math>, <math>b</math>, and <math>c</math>. Thus <math>\dfrac{abc}{4K}=R</math>, and <math>a+b+c=P</math>. We plug these in:
  
It would be convenient if this were an equilateral triangle, so we try an equilateral triangle first:
+
<math>\dfrac{K(a+b+c)}{\dfrac{a^3b^3c^3}{64K^3}}=\dfrac{64K^4(a+b+c)}{a^3b^3c^3}</math>.
  
<math>\dfrac{KP}{R^3}=\dfrac{27}{4}</math>
+
Now Heron's formula states that <math>K=\sqrt{(\dfrac{a+b+c}{2})(\dfrac{-a+b+c}{2})(\dfrac{a-b+c}{2})(\dfrac{a+b-c}{2})}</math>. Thus,
  
Now we just need to prove that that is the maximum.
+
<cmath>\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}</cmath>
  
 
{{incomplete|solution}}
 
{{incomplete|solution}}
  
 
==See also==
 
==See also==
*[[2005 Canadian MO]]
 
 
 
{{CanadaMO box|year=2005|num-b=3|num-a=5}}
 
{{CanadaMO box|year=2005|num-b=3|num-a=5}}
  
 
[[Category:Olympiad Geometry Problems]]
 
[[Category:Olympiad Geometry Problems]]

Revision as of 10:16, 5 May 2008

Problem

Let $ABC$ be a triangle with circumradius $R$, perimeter $P$ and area $K$. Determine the maximum value of $KP/R^3$.

Solution

Let the sides of triangle $ABC$ be $a$, $b$, and $c$. Thus $\dfrac{abc}{4K}=R$, and $a+b+c=P$. We plug these in:

$\dfrac{K(a+b+c)}{\dfrac{a^3b^3c^3}{64K^3}}=\dfrac{64K^4(a+b+c)}{a^3b^3c^3}$.

Now Heron's formula states that $K=\sqrt{(\dfrac{a+b+c}{2})(\dfrac{-a+b+c}{2})(\dfrac{a-b+c}{2})(\dfrac{a+b-c}{2})}$. Thus,

\[\dfrac{KP}{R^3}=\dfrac{(a+b+c)^3(-a+b+c)^2(a-b+c)^2(a+b-c)^2}{4a^3b^3c^3}\]

Template:Incomplete

See also

2005 Canadian MO (Problems)
Preceded by
Problem 3
1 2 3 4 5 Followed by
Problem 5