Difference between revisions of "2004 AIME I Problems/Problem 7"
(slightly different solution) |
m (→Solution 2: >= <=) |
||
Line 16: | Line 16: | ||
=== Solution 2 === | === Solution 2 === | ||
− | Let <math>S</math> be the [[set]] of integers <math>\{-1,2,-3,\ldots,14,-15\}</math>. The coefficient of <math>x^2</math> in the expansion is equal to the sum of the product of each pair of distinct terms, or <math>C = \sum_{i \neq j | + | Let <math>S</math> be the [[set]] of integers <math>\{-1,2,-3,\ldots,14,-15\}</math>. The coefficient of <math>x^2</math> in the expansion is equal to the sum of the product of each pair of distinct terms, or <math>C = \sum_{1 \le i \neq j}^{15} S_iS_j</math>. Also, we know that |
<center><math>\begin{align*}\left(\sum_{i=1}^{n} S_i\right)^2 &= \left(\sum_{i=1}^{n} S_i^2\right) + 2\left(\sum_{1 \le i \neq j}^{15} S_iS_j\right)\\ (-8)^2 &= \frac{15(15+1)(2\cdot 15+1)}{6} + 2C\end{align*}</math></center> | <center><math>\begin{align*}\left(\sum_{i=1}^{n} S_i\right)^2 &= \left(\sum_{i=1}^{n} S_i^2\right) + 2\left(\sum_{1 \le i \neq j}^{15} S_iS_j\right)\\ (-8)^2 &= \frac{15(15+1)(2\cdot 15+1)}{6} + 2C\end{align*}</math></center> | ||
where the left-hand sum can be computed from: | where the left-hand sum can be computed from: | ||
<center><math>\sum_{i=1}^{15} S_i = S_{15} + \left(\sum_{i=1}^{7} S_{2i-1} + S_{2i}\right) = -15 + 7 = -8</math></center> | <center><math>\sum_{i=1}^{15} S_i = S_{15} + \left(\sum_{i=1}^{7} S_{2i-1} + S_{2i}\right) = -15 + 7 = -8</math></center> | ||
− | and the right-hand sum comes from the formula for the sum of the first <math>n</math> perfect squares. Therefore, <math>C = \frac{64-1240}{2} = | + | and the right-hand sum comes from the formula for the sum of the first <math>n</math> perfect squares. Therefore, <math>|C| = \left|\frac{64-1240}{2}\right| = \boxed{588}</math>. |
== See also == | == See also == |
Revision as of 15:38, 27 April 2008
Problem
Let be the coefficient of in the expansion of the product Find
Solution
Solution 1
Let our polynomial be .
It is clear that the coefficient of in is , so , where is some polynomial divisible by .
Then and so , where is some polynomial divisible by .
However, we also know .
Equating coefficients, we have , so and .
Solution 2
Let be the set of integers . The coefficient of in the expansion is equal to the sum of the product of each pair of distinct terms, or . Also, we know that
where the left-hand sum can be computed from:
and the right-hand sum comes from the formula for the sum of the first perfect squares. Therefore, .
See also
2004 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |