Difference between revisions of "2008 AMC 12A Problems/Problem 23"

(Solution)
(Standardized answer choices)
Line 2: Line 2:
 
The solutions of the equation <math>z^4+4z^3i-6z^2-4zi-i=0</math> are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
 
The solutions of the equation <math>z^4+4z^3i-6z^2-4zi-i=0</math> are the vertices of a convex polygon in the complex plane. What is the area of the polygon?
  
<math>\textbf{(A)}\ 2^{\frac{5}{8}} \qquad \textbf{(B)}\ 2^{\frac{3}{4}} \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 2^{\frac{5}{4}} \qquad \textbf{(E)}\ 2^{\frac{3}{2}}</math>
+
<math>\mathrm{(A)}\ 2^{\frac{5}{8}}\qquad\mathrm{(B)}\ 2^{\frac{3}{4}}\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 2^{\frac{5}{4}}\qquad\mathrm{(E)}\ 2^{\frac{3}{2}}</math>
  
 
==Solution==
 
==Solution==

Revision as of 00:57, 26 April 2008

Problem

The solutions of the equation $z^4+4z^3i-6z^2-4zi-i=0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon?

$\mathrm{(A)}\ 2^{\frac{5}{8}}\qquad\mathrm{(B)}\ 2^{\frac{3}{4}}\qquad\mathrm{(C)}\ 2\qquad\mathrm{(D)}\ 2^{\frac{5}{4}}\qquad\mathrm{(E)}\ 2^{\frac{3}{2}}$

Solution

Looking at the coefficients, we are immediately reminded of the binomial expansion of ${\left(x+1\right)}^{4}$.

Modifying this slightly, we can write the given equation as: \[{\left(x+i\right)}^{4}=1+i=2^{\frac{1}{2}}\cdot \text{cis}\, \frac {\pi}{4}\] We can apply a translation of $-i$ and a rotation of $-\frac{\pi}{4}$ (both operations preserve area) to simplify the problem: \[z^{4}=2^{\frac{1}{2}}\]

Because the roots of this equation are created by rotating $\frac{\pi}{2}$ radians successively about the origin, the quadrilateral is a square.

We know that half the diagonal length of the square is ${\left(2^{\frac{1}{2}}\right)}^{\frac{1}{4}}=2^{\frac{1}{8}}$

Therefore, the area of the square is $\frac{\left( 2 \cdot 2^{\frac{1}{8} \right)}^{2}}{2}=\frac{2^{\frac{9}{4}}}{2}=2^{\frac{5}{4}} \Rightarrow D.$ (Error compiling LaTeX. Unknown error_msg)

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions