Difference between revisions of "2008 AMC 12A Problems/Problem 17"
(New page: ==Problem== Let <math>a_1,a_2,\ldots</math> be a sequence determined by the rule <math>a_n=a_{n-1}/2</math> if <math>a_{n-1}</math> is even and <math>a_n=3a_{n-1}+1</math> if <math>a_{n-1}...) |
I like pie (talk | contribs) (Standardized answer choices) |
||
Line 2: | Line 2: | ||
Let <math>a_1,a_2,\ldots</math> be a sequence determined by the rule <math>a_n=a_{n-1}/2</math> if <math>a_{n-1}</math> is even and <math>a_n=3a_{n-1}+1</math> if <math>a_{n-1}</math> is odd. For how many positive integers <math>a_1 \le 2008</math> is it true that <math>a_1</math> is less than each of <math>a_2</math>, <math>a_3</math>, and <math>a_4</math>? | Let <math>a_1,a_2,\ldots</math> be a sequence determined by the rule <math>a_n=a_{n-1}/2</math> if <math>a_{n-1}</math> is even and <math>a_n=3a_{n-1}+1</math> if <math>a_{n-1}</math> is odd. For how many positive integers <math>a_1 \le 2008</math> is it true that <math>a_1</math> is less than each of <math>a_2</math>, <math>a_3</math>, and <math>a_4</math>? | ||
− | <math>\ | + | <math>\mathrm{(A)}\ 250\qquad\mathrm{(B)}\ 251\qquad\mathrm{(C)}\ 501\qquad\mathrm{(D)}\ 502\qquad\mathrm{(E)} 1004</math> |
==Solution== | ==Solution== | ||
All positive integers can be expressed as <math>4n</math>, <math>4n+1</math>, <math>4n+2</math>, or <math>4n+3</math>, where <math>n</math> is a nonnegative integer. | All positive integers can be expressed as <math>4n</math>, <math>4n+1</math>, <math>4n+2</math>, or <math>4n+3</math>, where <math>n</math> is a nonnegative integer. | ||
− | If <math>a_1=4n</math>, then <math>a_2=\frac{4n}{2}=2n<a_1</math>. | + | *If <math>a_1=4n</math>, then <math>a_2=\frac{4n}{2}=2n<a_1</math>. |
− | If <math>a_1=4n+1</math>, then <math>a_2=3(4n+1)+1=12n+4</math>, <math>a_3=\frac{12n+4}{2}=6n+2</math>, and <math>a_4=\frac{6n+2}{2}=3n+1<a_1</math>. | + | *If <math>a_1=4n+1</math>, then <math>a_2=3(4n+1)+1=12n+4</math>, <math>a_3=\frac{12n+4}{2}=6n+2</math>, and <math>a_4=\frac{6n+2}{2}=3n+1<a_1</math>. |
− | If <math>a_1=4n+2</math>, then <math>a_2=2n+1<a_1</math>. | + | *If <math>a_1=4n+2</math>, then <math>a_2=2n+1<a_1</math>. |
− | If <math>a_1=4n+3</math>, then <math>a_2=3(4n+3)+1=12n+10</math>, <math>a_3=\frac{12n+10}{2}=6n+5</math>, and <math>a_4=3(6n+5)+1=18n+16</math>. | + | *If <math>a_1=4n+3</math>, then <math>a_2=3(4n+3)+1=12n+10</math>, <math>a_3=\frac{12n+10}{2}=6n+5</math>, and <math>a_4=3(6n+5)+1=18n+16</math>. |
Since <math>12n+10, 6n+5, 18n+16 > 4n+3</math>, every positive integer <math>a_1=4n+3</math> will satisfy <math>a_1<a_2,a_3,a_4</math>. | Since <math>12n+10, 6n+5, 18n+16 > 4n+3</math>, every positive integer <math>a_1=4n+3</math> will satisfy <math>a_1<a_2,a_3,a_4</math>. | ||
− | Since one fourth of the positive integers <math>a_1 \le 2008</math> can be expressed as <math>4n+3</math>, where <math>n</math> is a nonnegative integer, the answer is <math>\frac{1}{4}\cdot 2008 = 502 \Rightarrow D</math> | + | Since one fourth of the positive integers <math>a_1 \le 2008</math> can be expressed as <math>4n+3</math>, where <math>n</math> is a nonnegative integer, the answer is <math>\frac{1}{4}\cdot 2008 = 502 \Rightarrow D</math>. |
+ | |||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=A|num-b=16|num-a=18}} | {{AMC12 box|year=2008|ab=A|num-b=16|num-a=18}} | ||
[[Collatz Problem]] | [[Collatz Problem]] |
Revision as of 00:43, 26 April 2008
Problem
Let be a sequence determined by the rule if is even and if is odd. For how many positive integers is it true that is less than each of , , and ?
Solution
All positive integers can be expressed as , , , or , where is a nonnegative integer.
- If , then .
- If , then , , and .
- If , then .
- If , then , , and .
Since , every positive integer will satisfy .
Since one fourth of the positive integers can be expressed as , where is a nonnegative integer, the answer is .
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |