Difference between revisions of "2008 AMC 12A Problems/Problem 15"
I like pie (talk | contribs) (Duplicate, standardized answer choices, added AMC 10 box) |
|||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2008 AMC 12A Problems|2008 AMC 12A #15]] and [[2008 AMC 10A Problems/Problem 24|2008 AMC 10A #24]]}} | ||
==Problem== | ==Problem== | ||
Let <math>k={2008}^{2}+{2}^{2008}</math>. What is the units digit of <math>k^2+2^k</math>? | Let <math>k={2008}^{2}+{2}^{2008}</math>. What is the units digit of <math>k^2+2^k</math>? | ||
− | <math>\ | + | <math>\mathrm{(A)}\ 0\qquad\mathrm{(B)}\ 2\qquad\mathrm{(C)}\ 4\qquad\mathrm{(D)}\ 6\qquad\mathrm{(E)}\ 8</math> |
==Solution== | ==Solution== | ||
Line 12: | Line 13: | ||
==See Also== | ==See Also== | ||
− | {{AMC12 box|year=2008|num-b=14|num-a=16|ab=A}} | + | {{AMC12 box|year=2008|ab=A|num-b=14|num-a=16}} |
+ | {{AMC10 box|year=2008|ab=A|num-b=23|num-a=25}} |
Revision as of 00:35, 26 April 2008
- The following problem is from both the 2008 AMC 12A #15 and 2008 AMC 10A #24, so both problems redirect to this page.
Problem
Let . What is the units digit of ?
Solution
.
So, . Since , .
Therefore, . So the units digit is .
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |