Difference between revisions of "2008 AMC 10A Problems/Problem 5"

(Added problem)
(Added solution)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
{{solution}}
+
Notice that everything cancels out except for <math>2008</math> in the numerator and <math>4</math> in the denominator.
 +
 
 +
Thus, the product is <math>\frac{2008}{4}=502</math>, and the answer is <math>\mathrm{(B)}</math>.
 
   
 
   
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=A|num-b=4|num-a=6}}
 
{{AMC10 box|year=2008|ab=A|num-b=4|num-a=6}}

Revision as of 21:57, 25 April 2008

Problem

Which of the following is equal to the product \[\frac{8}{4}\cdot\frac{12}{8}\cdot\frac{16}{12}\cdot\cdots\cdot\frac{4n+4}{4n}\cdot\cdots\cdot\frac{2008}{2004}?\]

$\mathrm{(A)}\ 251\qquad\mathrm{(B)}\ 502\qquad\mathrm{(C)}\ 1004\qquad\mathrm{(D)}\ 2008\qquad\mathrm{(E)}\ 4016$

Solution

Notice that everything cancels out except for $2008$ in the numerator and $4$ in the denominator.

Thus, the product is $\frac{2008}{4}=502$, and the answer is $\mathrm{(B)}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions