Difference between revisions of "2008 AMC 10B Problems/Problem 3"

(New page: ==Problem== Assume that <math>x</math> is a positive real number. Which is equivalent to <math>\sqrt[3]{x\sqrt{x}}</math>? <math>\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\q...)
 
(Added solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
{{solution}}
+
<math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{\sqrt{x^3}}=\sqrt[6]{x^3}=x^{3/6}=x^{1/2}\ \mathrm{(D)}</math>
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=2|num-a=4}}
 
{{AMC10 box|year=2008|ab=B|num-b=2|num-a=4}}

Revision as of 01:46, 25 April 2008

Problem

Assume that $x$ is a positive real number. Which is equivalent to $\sqrt[3]{x\sqrt{x}}$?

$\mathrm{(A)}\ x^{1/6}\qquad\mathrm{(B)}\ x^{1/4}\qquad\mathrm{(C)}\ x^{3/8}\qquad\mathrm{(D)}\ x^{1/2}\qquad\mathrm{(E)}\ x$

Solution

$\sqrt[3]{x\sqrt{x}}=\sqrt[3]{\sqrt{x^3}}=\sqrt[6]{x^3}=x^{3/6}=x^{1/2}\ \mathrm{(D)}$

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions