Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 4"

m
Line 2: Line 2:
 
<math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are complex numbers such that
 
<math>\zeta_1, \zeta_2,</math> and <math>\zeta_3</math> are complex numbers such that
  
<math>\zeta_1 + \zeta_2 + \zeta_3 = 1</math>
+
<math>\begin{align*}\zeta_1+\zeta_2+\zeta_3&=1\\
 
+
\zeta_1^2+\zeta_2^2+\zeta_3^2&=3\\
<math>\zeta_1^{2} + \zeta_2^{2} + \zeta_3^{2} = 3</math>
+
\zeta_1^3+\zeta_2^3+\zeta_3^3&=7\end{align*}</math>
 
 
<math>\zeta_1^{3} + \zeta_2^{3} + \zeta_3^{3} = 7</math>
 
  
  
Line 13: Line 11:
 
==Solution==
 
==Solution==
 
{{solution}}
 
{{solution}}
 
==See also==
 

Revision as of 01:31, 23 April 2008

Problem

$\zeta_1, \zeta_2,$ and $\zeta_3$ are complex numbers such that

$\begin{align*}\zeta_1+\zeta_2+\zeta_3&=1\\ \zeta_1^2+\zeta_2^2+\zeta_3^2&=3\\ \zeta_1^3+\zeta_2^3+\zeta_3^3&=7\end{align*}$ (Error compiling LaTeX. Unknown error_msg)


Compute $\zeta_1^{7} + \zeta_2^{7} + \zeta_3^{7}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.