Difference between revisions of "Lucas' Theorem"
m (Needs to be wikified -- internal links, etc.) |
I like pie (talk | contribs) |
||
Line 1: | Line 1: | ||
− | + | '''Lucas' Theorem''' states that for any [[prime]] <math>p</math> , if <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the [[base]] <math>p</math> representation of <math>n</math> and <math>(\overline{i_mi_{m-1}\cdots i_0})_p</math> is the base <math>p</math> representation of <math>i</math>, where <math>n\geq i</math>, then <math>\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}</math>. | |
== Lemma == | == Lemma == | ||
Line 5: | Line 5: | ||
<cmath>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</cmath> | <cmath>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</cmath> | ||
=== Proof === | === Proof === | ||
− | For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have | + | For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have |
− | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</math></center> Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then <center><math>\begin{eqnarray*}(1+x)^{p^{k+1}} | + | <center><math>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\ |
+ | &\equiv& 1+x^p\pmod{p}\end{eqnarray*}</math></center> | ||
+ | Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then | ||
+ | <center><math>\begin{eqnarray*}(1+x)^{p^{k+1}} | ||
&\equiv&\left((1+x)^{p^k}\right)^p\\ | &\equiv&\left((1+x)^{p^k}\right)^p\\ | ||
&\equiv&\left(1+x^{p^k}\right)^p\\ | &\equiv&\left(1+x^{p^k}\right)^p\\ | ||
Line 13: | Line 16: | ||
== Proof == | == Proof == | ||
− | Consider | + | Consider <math>(1+x)^n</math>. If <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the base <math>p</math> representation of <math>n</math>, then <math>0\leq n_k \leq p-1</math> for all <math>0\leq k \leq m</math> and <math>n=n_mp^m+n_{m-1}p^{m-1}+\cdots+n_1p+n_0</math>. We then have |
+ | <center><math>\begin{eqnarray*}(1+x)^n&=&(1+x)^{n_mp^m+n_{m-1}p^{m-1}+\cdots+n_1p+n_0}\\ | ||
&=&[(1+x)^{p^m}]^{n_m}[(1+x)^{p^{m-1}}]^{n_{m-1}}\cdots[(1+x)^p]^{n_1}(1+x)^{n_0}\\ | &=&[(1+x)^{p^m}]^{n_m}[(1+x)^{p^{m-1}}]^{n_{m-1}}\cdots[(1+x)^p]^{n_1}(1+x)^{n_0}\\ | ||
&\equiv&(1+x^{p^m})^{n_m}(1+x^{p^{m-1}})^{n_{m-1}}\cdots(1+x^p)^{n_1}(1+x)^{n_0}\pmod{p} | &\equiv&(1+x^{p^m})^{n_m}(1+x^{p^{m-1}})^{n_{m-1}}\cdots(1+x^p)^{n_1}(1+x)^{n_0}\pmod{p} | ||
− | \end{eqnarray*}</math></center>We want the coefficient of <math>x^i</math> in <math>(1+x)^n</math>. Since <math>i=i_mp^m+i_{m-1}p^{m-1}+\cdots+i_1p+i_0</math>, we want the coefficient of <math>(x^{p^{m}})^{i_{m}}(x^{p^{m-1}})^{i_{m-1}}\cdots (x^p)^{i_1}x^{i_0 | + | \end{eqnarray*}</math></center> |
+ | We want the coefficient of <math>x^i</math> in <math>(1+x)^n</math>. Since <math>i=i_mp^m+i_{m-1}p^{m-1}+\cdots+i_1p+i_0</math>, we want the coefficient of <math>(x^{p^{m}})^{i_{m}}(x^{p^{m-1}})^{i_{m-1}}\cdots (x^p)^{i_1}x^{i_0}</math>. | ||
− | == | + | The coefficient of each <math>(x^{p^{k}})^{i_{k}}</math> comes from the binomial expansion of <math>(1+x^{p^k})^{n_k}</math>, which is <math>\binom{n_k}{i_k}</math>. Therefore we take the product of all such <math>\binom{n_k}{i_k}</math>, and thus we have |
+ | <center><math>\binom{n}{i}\equiv\prod_{k=1}^{n}\binom{n_k}{i_k}\pmod{p}</math></center> | ||
+ | Note that <math>n_k<i_k\Longrightarrow\binom{n_k}{i_k}=0\Longrightarrow\binom{n}{i}\equiv 0 \pmod{p}</math>. | ||
− | = | + | This is equivalent to saying that there is no <math>x^i</math> term in the expansion of <math>(1+x)^n=(1+x^{p^m})^{n_m}(1+x^{p^{m-1}})^{n_{m-1}}\cdots(1+x^p)^{n_1}(1+x)^{n_0}</math>. |
== See also == | == See also == | ||
− | |||
* [[Combinatorics]] | * [[Combinatorics]] | ||
* [[Generating function]] | * [[Generating function]] | ||
Line 30: | Line 36: | ||
[[Category:Number theory]] | [[Category:Number theory]] | ||
[[Category:Theorems]] | [[Category:Theorems]] | ||
− | |||
− |
Revision as of 20:31, 21 April 2008
Lucas' Theorem states that for any prime , if is the base representation of and is the base representation of , where , then .
Contents
Lemma
For prime and ,
Proof
For all , . Then we have
Assume we have . Then
&\equiv&\left((1+x)^{p^k}\right)^p\\ &\equiv&\left(1+x^{p^k}\right)^p\\ &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\
&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)Proof
Consider . If is the base representation of , then for all and . We then have
&=&[(1+x)^{p^m}]^{n_m}[(1+x)^{p^{m-1}}]^{n_{m-1}}\cdots[(1+x)^p]^{n_1}(1+x)^{n_0}\\ &\equiv&(1+x^{p^m})^{n_m}(1+x^{p^{m-1}})^{n_{m-1}}\cdots(1+x^p)^{n_1}(1+x)^{n_0}\pmod{p}
\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)We want the coefficient of in . Since , we want the coefficient of .
The coefficient of each comes from the binomial expansion of , which is . Therefore we take the product of all such , and thus we have
Note that .
This is equivalent to saying that there is no term in the expansion of .