Difference between revisions of "Minkowski Inequality"

m
Line 1: Line 1:
Minkowski Inequality states:
+
The '''Minkowski Inequality''' states that if <math>r>s</math> is a nonzero real number, then for any positive numbers <math>a_{ij}</math>, the following holds:
 
 
Let <math>r>s</math> be a nonzero real number, then for any positive numbers <math>a_{ij}</math>, the following inequality holds:
 
 
 
 
<math>\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}</math>
 
<math>\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}</math>
  
Notice that if one of <math>r,s</math> is zero, the inequality is equivalent to [[Holder's Inequality]].
+
Notice that if either <math>r</math> or <math>s</math> is zero, the inequality is equivalent to [[Holder's Inequality]].
  
 
== Problems ==
 
== Problems ==
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=432791#432791 AIME 1991 Problem 15]
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=432791#432791 AIME 1991 Problem 15]
  
{{wikify}}
 
 
{{stub}}
 
{{stub}}
  
 
[[Category:Inequality]]
 
[[Category:Inequality]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]

Revision as of 01:23, 21 April 2008

The Minkowski Inequality states that if $r>s$ is a nonzero real number, then for any positive numbers $a_{ij}$, the following holds: $\left(\sum_{j=1}^{m}\left(\sum_{i=1}^{n}a_{ij}^r\right)^{s/r}\right)^{1/s}\geq \left(\sum_{i=1}^{n}\left(\sum_{j=1}^{m}a_{ij}^s\right)^{r/s}\right)^{1/r}$

Notice that if either $r$ or $s$ is zero, the inequality is equivalent to Holder's Inequality.

Problems

This article is a stub. Help us out by expanding it.