Difference between revisions of "1990 AIME Problems/Problem 7"
m (c \l(\r)) |
(asymptote) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | A [[triangle]] has [[vertex|vertices]] <math>P_{}^{}=(-8,5)</math>, <math>Q_{}^{}=(-15,-19)</math>, and <math>R_{}^{}=(1,-7)</math>. The [[equation]] of the [[bisector]] of <math>\angle P</math> can be written in the form <math>ax+2y+c=0_{}^{}</math>. Find <math>a+c_{}^{}</math>. | + | A [[triangle]] has [[vertex|vertices]] <math>P_{}^{}=(-8,5)</math>, <math>Q_{}^{}=(-15,-19)</math>, and <math>R_{}^{}=(1,-7)</math>. The [[equation]] of the [[angle bisector|bisector]] of <math>\angle P</math> can be written in the form <math>ax+2y+c=0_{}^{}</math>. Find <math>a+c_{}^{}</math>. |
− | |||
− | |||
+ | <center><asy> | ||
+ | import graph; | ||
+ | pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); | ||
+ | pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17); | ||
+ | MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f); | ||
+ | D(P--Q--R--cycle);D(P--T,EndArrow(2mm)); | ||
+ | D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); | ||
+ | </asy></center> | ||
+ | <!-- replaced: Image:1990 AIME Problem 7.png by I_like_pie --> | ||
__TOC__ | __TOC__ | ||
== Solution == | == Solution == | ||
Line 9: | Line 16: | ||
=== Solution 1 === | === Solution 1 === | ||
− | Use the [[angle bisector theorem]] to find that the angle bisector of <math>\angle P</math> divides <math>QR</math> into segments of length <math>\frac{25}{x} = \frac{15}{20 -x} \Longrightarrow x | + | <center><asy> |
+ | import graph; | ||
+ | pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); | ||
+ | pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17),U=IP(P--T,Q--R); | ||
+ | MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f);MP("P'",U,SE,f); | ||
+ | D(P--Q--R--cycle);D(U);D(P--U); | ||
+ | D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); | ||
+ | </asy></center> | ||
+ | Use the [[angle bisector theorem]] to find that the angle bisector of <math>\angle P</math> divides <math>QR</math> into segments of length <math>\frac{25}{x} = \frac{15}{20 -x} \Longrightarrow x = \frac{25}{2},\ \frac{15}{2}</math>. It follows that <math>\frac{QP'}{RP'} = \frac{5}{3}</math>, and so <math>P' = \left(\frac{5x_R + 3x_Q}{8},\frac{5y_R + 3y_Q}{8}\right) = (-5,-23/2)</math>. | ||
− | + | The desired answer is the equation of the line <math>PP'</math>. <math>PP'</math> has slope <math>\frac{-11}{2}</math>, from which we find the equation to be <math>11x + 2y + 78 = 0</math>. Therefore, <math>a+c = \boxed{089}</math>. | |
=== Solution 2 === | === Solution 2 === | ||
− | Extend <math>PR</math> to a point <math>S</math> such that <math>PS = 25</math>. This forms an [[isosceles triangle]] <math>PQS</math>. The [[coordinate]]s of <math>S</math>, using the slope of <math>PR</math> (which is <math>- | + | <center><asy> |
+ | import graph; | ||
+ | pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); | ||
+ | pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17); | ||
+ | MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,NE,f);MP("S",S,E,f); | ||
+ | D(P--Q--R--cycle);D(R--S--Q,dashed);D(T);D(P--T); | ||
+ | D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); | ||
+ | </asy></center> | ||
+ | Extend <math>PR</math> to a point <math>S</math> such that <math>PS = 25</math>. This forms an [[isosceles triangle]] <math>PQS</math>. The [[coordinate]]s of <math>S</math>, using the slope of <math>PR</math> (which is <math>-4/3</math>), can be determined to be <math>(7,-15)</math>. Since the [[angle bisector]] of <math>\angle P</math> must touch the midpoint of <math>QS \Rightarrow (-4,-17)</math>, we have found our two points. We reach the same answer of <math>11x + 2y + 78 = 0</math>. | ||
+ | |||
+ | === Solution 3 === | ||
+ | <center><asy> | ||
+ | import graph; | ||
+ | pointpen=black;pathpen=black+linewidth(0.7);pen f = fontsize(10); | ||
+ | pair P=(-8,5),Q=(-15,-19),R=(1,-7),S=(7,-15),T=(-4,-17),U=IP(P--T,Q--R); | ||
+ | MP("P",P,N,f);MP("Q",Q,W,f);MP("R",R,E,f);MP("P'",U,SE,f); | ||
+ | D(P--Q--R--cycle);D(U);D(P--U); | ||
+ | D((-17,0)--(4,0),Arrows(2mm));D((0,-21)--(0,7),Arrows(2mm)); | ||
+ | D(Q--(U.x,Q.y)--U,dashed);D(R--(R.x,U.y)--U,dashed); | ||
+ | </asy></center> | ||
+ | If we draw a triangle using the points <math>Q</math>, the point by which the angle bisector touches <math>QR</math>, and the point directly to the right of <math>Q</math> and the bottom of the aforementioned point, we get another <math>3-4-5 \triangle</math> (this can be shown by proving its [[similar triangle|similarity]] to the triangle drawn using the side of length <math>20</math> as the [[hypotenuse]]). Using this, the lengths of the triangle are <math>\frac{15}{2}, 10, \frac{25}{2}</math>. | ||
− | + | Thus, the angle bisector touches <math>QR</math> at the point <math>\left(-15 + 10, -19 + \frac{15}{2}\right) \Rightarrow \left(-5,-\frac{23}{2}\right) = \frac{y + 8}{x - 5}</math> <math>\Longrightarrow -11x + 55 = 2y + 16</math> <math>\Longrightarrow 11x + 2y + 78 = 0</math>. Thus, the solution is <math>11 + 78 = \boxed{089}</math>. | |
== See also == | == See also == |
Revision as of 18:57, 11 April 2008
Problem
A triangle has vertices , , and . The equation of the bisector of can be written in the form . Find .
Solution
Use the distance formula to determine the lengths of each of the sides of the triangle. We find that it has lengths of side , indicating that it is a right triangle. At this point, we just need to find another point that lies on the bisector of .
Solution 1
Use the angle bisector theorem to find that the angle bisector of divides into segments of length . It follows that , and so .
The desired answer is the equation of the line . has slope , from which we find the equation to be . Therefore, .
Solution 2
Extend to a point such that . This forms an isosceles triangle . The coordinates of , using the slope of (which is ), can be determined to be . Since the angle bisector of must touch the midpoint of , we have found our two points. We reach the same answer of .
Solution 3
If we draw a triangle using the points , the point by which the angle bisector touches , and the point directly to the right of and the bottom of the aforementioned point, we get another (this can be shown by proving its similarity to the triangle drawn using the side of length as the hypotenuse). Using this, the lengths of the triangle are .
Thus, the angle bisector touches at the point . Thus, the solution is .
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |