Difference between revisions of "2008 AIME I Problems/Problem 14"
(solution by azjps) |
Chickendude (talk | contribs) (Alternate Solution by chickendude) |
||
Line 27: | Line 27: | ||
<cmath>BP^2 \le 405 + 729 \cdot \frac{1}{27} = \boxed{432}</cmath> | <cmath>BP^2 \le 405 + 729 \cdot \frac{1}{27} = \boxed{432}</cmath> | ||
Equality holds when <math>x = 27</math>. | Equality holds when <math>x = 27</math>. | ||
+ | |||
+ | ==Alternate Solution== | ||
+ | <asy> | ||
+ | unitsize(4mm); | ||
+ | pair B=(0,13.5), C=(23.383,0); | ||
+ | pair O=(7.794, 9), P=(2*7.794,0); | ||
+ | pair T=(7.794,0), Q=(0,0); | ||
+ | pair A=(2*7.794,4.5); | ||
+ | |||
+ | draw(Q--B--C--Q); | ||
+ | draw(O--T); | ||
+ | draw(A--P); | ||
+ | draw(Circle(O,9)); | ||
+ | |||
+ | dot(A);dot(B);dot(C);dot(T);dot(P);dot(O);dot(Q); | ||
+ | label("\(B\)",B,NW); | ||
+ | label("\(A\)",A,NE); | ||
+ | label("\(\omega\)",O,N); | ||
+ | label("\(P\)",P,S); | ||
+ | label("\(T\)",T,S); | ||
+ | label("\(Q\)",Q,S); | ||
+ | label("\(C\)",C,E); | ||
+ | label("\(\theta\)",C + (-1.5,0), NW); | ||
+ | label("\(9\)", (B+O)/2, N); | ||
+ | label("\(9\)", (O+A)/2, N); | ||
+ | label("\(9\)", (O+T)/2,W); | ||
+ | </asy> | ||
+ | |||
+ | <math>BQ = \omega T + B\omega\sin\theta = 9 + 9\sin\theta = 9(1 + \sin\theta)</math> | ||
+ | |||
+ | <math>QP = BA\cos\theta = 18\cos\theta</math> | ||
+ | |||
+ | <math>BP^2 = BQ^2 + QP^2 = 9^2(1 + \sin\theta)^2 + 18^2\cos^2\theta</math> | ||
+ | |||
+ | <math>BP^2 = 9^2[1 + 2\sin\theta + \sin^2\theta + 4(1 - \sin^2\theta)]</math> | ||
+ | |||
+ | <math>BP^2 = 9^2[5 + 2\sin\theta - 3\sin^2\theta]</math> | ||
+ | |||
+ | Maximum at <math>\sin\theta = \frac { - 2}{ - 6} = \frac {1}{3}</math> | ||
+ | |||
+ | <math>m^2 = 9^2[5 + \frac {2}{3} - \frac {1}{3}] = \boxed{432}</math> | ||
== See also == | == See also == |
Revision as of 16:16, 23 March 2008
Problem
Let be a diameter of circle . Extend through to . Point lies on so that line is tangent to . Point is the foot of the perpendicular from to line . Suppose , and let denote the maximum possible length of segment . Find .
Solution
Let . Since , it follows easily that . Thus . By the Law of Cosines on , where , so: Let ; this is a quadratic, and its discriminant must be nonnegative: . Thus, Equality holds when .
Alternate Solution
Maximum at
See also
2008 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |