Difference between revisions of "Equivalence relation"

m
m (Minor edit)
 
Line 1: Line 1:
 
Let <math>S</math> be a [[set]].  A [[binary relation]] <math>\sim</math> on <math>S</math> is said to be an '''equivalence relation''' if <math>\sim</math> satisfies the following three properties:
 
Let <math>S</math> be a [[set]].  A [[binary relation]] <math>\sim</math> on <math>S</math> is said to be an '''equivalence relation''' if <math>\sim</math> satisfies the following three properties:
 
+
# For every element <math>x \in S</math>, <math>x \sim x</math>.  ([[Reflexive property]])
1. For every element <math>x \in S</math>, <math>x \sim x</math>.  ([[Reflexive property]])
+
# If <math>x, y \in S</math> such that <math>x \sim y</math>, then we also have <math>y \sim x</math>.  ([[Symmetric property]])
 
+
# If <math>x, y, z \in S</math> such that <math>x \sim y</math> and <math>y \sim z</math>, then we also have <math>x \sim z</math>.  ([[Transitive property]])
2. If <math>x, y \in S</math> such that <math>x \sim y</math>, then we also have <math>y \sim x</math>.  ([[Symmetric property]])
 
 
 
3. If <math>x, y, z \in S</math> such that <math>x \sim y</math> and <math>y \sim z</math>, then we also have <math>x \sim z</math>.  ([[Transitive property]])
 
 
 
  
 
Some common examples of equivalence relations:
 
Some common examples of equivalence relations:
  
* The relation <math>=</math> (equality), on the set of [[real number]]s.
+
* The relation <math>=</math> [[equality]], on the set of [[complex number]]s.
 
* The relation <math>\cong</math> (congruence), on the set of geometric figures in the [[plane]].
 
* The relation <math>\cong</math> (congruence), on the set of geometric figures in the [[plane]].
 
* The relation <math>\sim</math> (similarity), on the set of geometric figures in the plane.
 
* The relation <math>\sim</math> (similarity), on the set of geometric figures in the plane.
* For a given [[positive integer]] <math>n</math>, the relation <math>\equiv \pmod n</math>, on the set of [[integer]]s.  ([[Congruence]] [[Modular arithmetic|mod ''n'']])
+
* For a given [[positive integer]] <math>n</math>, the relation <math>\equiv \pmod n</math>, on the set of [[integer]]s.  ([[Congruence]] [[Modular arithmetic|modulo ''n'']])
 +
 
 +
{{stub}}

Latest revision as of 11:17, 15 February 2025

Let $S$ be a set. A binary relation $\sim$ on $S$ is said to be an equivalence relation if $\sim$ satisfies the following three properties:

  1. For every element $x \in S$, $x \sim x$. (Reflexive property)
  2. If $x, y \in S$ such that $x \sim y$, then we also have $y \sim x$. (Symmetric property)
  3. If $x, y, z \in S$ such that $x \sim y$ and $y \sim z$, then we also have $x \sim z$. (Transitive property)

Some common examples of equivalence relations:

This article is a stub. Help us out by expanding it.